首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A depth-averaged two-dimensional (2D) numerical model for unsteady flow and nonuniform sediment transport in open channels is established using the finite volume method on a nonstaggered, curvilinear grid. The 2D shallow water equations are solved by the SIMPLE(C) algorithms with the Rhie and Chow’s momentum interpolation technique. The proposed sediment transport model adopts a nonequilibrium approach for nonuniform total-load sediment transport. The bed load and suspended load are calculated separately or jointly according to sediment transport mode. The sediment transport capacity is determined by four formulas which are capable of accounting for the hiding and exposure effects among different size classes. An empirical formula is proposed to consider the effects of the gravity on the sediment transport capacity and the bed-load movement direction in channels with steep slopes. Flow and sediment transport are simulated in a decoupled manner, but the sediment module adopts a coupling procedure for the computations of sediment transport, bed change, and bed material sorting. The model has been tested against several experimental and field cases, showing good agreement between the simulated results and measured data.  相似文献   

2.
This paper presents a two-dimensional morphological model for unsteady flow and both suspended-load and bed-load transport of multiple grain size to simulate transport of graded sediments downstream from the Three Gorges Reservoir. The model system includes a hydrodynamic module and a sediment module. The hydrodynamic module is based on the depth-averaged shallow water equations in orthogonal curvilinear coordinates. The sediment module describing nonuniform sediment transport is developed to include nonequilibrium transport processes, bed deformation, and bed material sorting. The model was calibrated using field observations through application to a 63-km-long alluvial river channel on the middle Yangtze River in China. A total of 16 size groups and a loose layer method of three sublayers were considered for the transport of the nonuniform bed materials in a long-term simulation. Predictions are compared with preliminary results of field observations and factors affecting the reliability of the simulated results are discussed. The results may be helpful to the development of more accurate simulation models in the future.  相似文献   

3.
The changes in channel geometry downstream of Hapcheon Dam, South Korea, are closely examined. Daily pulses of water from peak hydropower generation and from sudden sluice gate operations affect the 45-km reach of the Hwang River between the Hapcheon Reregulation Dam and the Nakdong River. From 1983 to 2003, the median bed-material size, d50, increased from 1.0 to 5.7 mm, and the bed slope of the reach decreased from 94 to 85 cm/km. The vertical riverbed degradation averaged 2.6 m for a distance of 20 km below the reregulation dam. A simple analytical model is developed to predict the increase in sediment transport and the river bed adjustments from flow pulses in comparison with steady flow discharges. Numerical model simulations confirm the theoretical prediction that sediment transport rates from daily pulses are 21% higher than for steady flow discharges. Unsteady sediment transport simulations indicate that the channel bed degradation should extend mostly 20–25 km below the reregulation dam and should not change much after 2013.  相似文献   

4.
The purpose of this paper is to develop an unsteady 2D depth-averaged model for nonuniform sediment transport in alluvial channels. In this model, the orthogonal curvilinear coordinate system is adopted; the transport mechanisms of cohesive and noncohesive sediment are both embedded; the suspended load and bed load are treated separately. In addition, the processes of hydraulic sorting, armoring, and bed consolidation are also included in the model. The implicit two-step split-operator approach is used to solve the flow governing equations and the coupling approach with iterative method are used to solve the mass-conservation equation of suspended sediment, mass-conservation equation of active-layer sediment, and global mass-conservation equation for bed sediment simultaneously. Three sets of data, including suspension transport, degradation and aggradation cases for noncohesive sediment, and aggradation, degradation, and consolidation cases for cohesive sediment, have been demonstrated to show the rationality and accuracy of the model. Finally, the model is applied to evaluate the desilting efficiency for Ah Gong Diann Reservoir located in Taiwan to show its applicability.  相似文献   

5.
Fluvial bed load transport is often considered to assume a capacity regime exclusively determined by local flow conditions, but its applicability in naturally occurring unsteady flows remains to be theoretically justified. In addition, mathematical river models are often decoupled, being based on simplified conservation equations and ignoring the feedback impacts of bed deformation to a certain extent. So far whether the decoupling could have considerable impacts on the fluvial processes with bed load transport remains poorly understood. This paper presents a theoretical investigation of both issues. The multiple time scales of fluvial processes with bed load sediment are evaluated to examine the applicability of bed load transport capacity and decoupled models. Numerical case studies involving active bed load transport by highly unsteady flows complement the analysis of the time scales. It is found that bed load transport can sufficiently rapidly adapt to capacity in line with local flow because sediment exchange with the bed overwhelms the advection of bed load sediment by the mean flow. The present work provides theoretical justification of the concept of bed load transport capacity in most circumstances, which is underpinned by existing observations of bed load transport by flash floods. For fluvial processes with bed load transport, the feedback impacts of bed deformation are limited; therefore, decoupled modeling is, in this sense, appropriate.  相似文献   

6.
Problems and difficulties in modeling sediment transport in alluvial rivers arise when one uses the theory of equilibrium transport of uniform sediment to simulate riverbed variation. A two-dimensional mathematical model for nonuniform suspended sediment transport is presented to simulate riverbed deformation. Through dividing sediment mixture into several size groups in which the sediment particles are thought to be uniform, the nonuniformity and the exchange between suspended sediment and bed material are considered. The change of concentration along the flow direction, size redistribution, and cross-sectional bed variation can then be described reasonably well by the model. In simulating the flow field with big dry-wet flats, moving boundary problems are solved very well by introducing a so-called finite-slot technique. Verification with laboratory data shows that the model has a good ability to simulate channel bed variations. Last, the model was applied to a real alluvial river system. Variables such as water level, sediment concentration, suspended sediment size distribution, and riverbed variation were obtained with encouraging results.  相似文献   

7.
Prediction of Concerted Sediment Flushing   总被引:1,自引:0,他引:1  
A proprietary one-dimensional numerical model was developed for predicting the amounts of sediment flushed and deposited in the reservoirs in series, the bed evolutions, and variations of the suspended solids concentrations along a river during the concerted sediment flushing events. The model consists of a flow movement module and sediment transport module in which the bed material load is taken as sediment mixture. The nonuniform property of the bed material load is modeled by the introduction of a mixing layer, transition layer, and deposition strata. The model was calibrated on the basis of the field data at Dashidaira and Unazuki reservoirs on the Kurobe River in Japan. The calculated results are in good agreement with the measurements. For the reservoirs out of Japan, the Ashida and Michiue bed load formula used in the model should be verified or replaced by other formulas.  相似文献   

8.
The nonuniformity of bed material affects the bed-material load calculations. A size gradation correction factor Kd is developed to account for the lognormal distribution of bed material. The use of Kd in conjunction with bed-material load equations originally developed for single particle sizes improves the accuracy of transport calculations for sediment mixtures. This method is applicable to laboratory flumes and natural rivers with median diameter d50 of bed material in the sand size ranges. The improvement on transport rate by Kd factor is significant for data with standard deviation σg of bed material greater than 2, while the correction is negligible for data with σg less than 1.5. Sediment in transport also follows a lognormal distribution with a median diameter d50t generally finer than the corresponding d50. As the size gradation increases, d50t becomes much finer than the corresponding value of d50. The relationship between d50t and d50 is defined as a function of σg and agrees well with field data. The previously recommended use of d35 as representative size of the bed material is found not to be generally applicable.  相似文献   

9.
Longitudinal stripes are a common bed form in heterogeneous alluvial sediments and consist of periodic, spanwise variations in bed texture and elevation that are aligned parallel to the mean flow direction. This paper quantifies mean and turbulent flow structures over self-formed sediment stripes in a weakly bimodal sand and gravel mixture. Turbulence anisotropy generates two secondary circulation cells across the channel half-width, which produce a cross-stream perturbation in boundary shear stress. The interaction between this flow structure and the selective transport of bed material generates spanwise sediment sorting that is symmetrical about the centerline. Finer sediments are entrained from regions of high shear stress, transported laterally by the secondary flow, and deposited in regions of lower shear stress. Lateral changes in bed texture further enhance the near-bed secondary flow, which provides a positive feedback mechanism for stripe growth. In bimodal sediments, at shear stresses just above the entrainment threshold, stripes may replace lower-stage plane beds. At higher shear stresses the coarser sediment becomes more mobile and the stripes are replaced by flow transverse bed forms.  相似文献   

10.
Based on a method of combining stochastic processes with mechanics, a new bedload formula for the arbitrary kth size fraction of nonuniform sediment is theoretically developed by using a stochastic model of sediment exchange and the probabilistic distribution of fractional bedload transport rates. The relations, proposed recently by Sun, for the probability of fractional incipient motion and for the average velocity of particle motion are introduced to bedload formula. Plenty of experimental data for the bedload transport rate of uniform sediment are used to determine two constants. The theoretical bedload formula for any fraction of nonuniform sediment possesses several advantages, including a clear physical concept, a strict mathematical derivation, and a self-adaptability to uniform sediment. The formula is verified with natural data expressing the transport of nonuniform sediment under full motion in laboratory flume. The result shows that the experimental observations agree well with the predicted fractional bedload transport rates. Comparison of the theory with field data finds that the proposed formula still applies to partial transport of bedload in gravel-bed streams as long as the immobile percentage of bed material is taken into account.  相似文献   

11.
To investigate the complex hydrological, morphodynamic, and environmental processes in watersheds, a physically-based integrated two-dimensional (2D) surface and three-dimensional (3D) subsurface model for flow, soil erosion and transport, and contaminant transport in the surface-subsurface system is presented in this paper. The model simulates the rainfall-induced surface flow by solving the depth-averaged 2D diffusion wave equation and the variably-saturated subsurface flow by solving the 3D mixed-form Richards equation. The surface and subsurface flow equations are coupled using the continuity conditions of pressure and exchange flux at the ground surface. The model uses the concept of nonequilibrium in the depth-averaged 2D simulation of nonuniform total-load sediment transport in upland fields, considering detachments by rainsplash and hydraulic erosion driven by surface flow. The integrated 2D surface and 3D subsurface contaminant transport model takes into account the contaminant changes due to sediment sorption and desorption, as well as exchanges between surface and subsurface domains due to infiltration, diffusion, and bed change. The model applies the same set of surface equations of flow, sediment, and contaminant transport for describing both upland areas and streams, so that no special treatments are required at their interface. The established model has been evaluated by comparisons with published experimental, numerical, and analytical data and then applied in an agricultural watershed. The model is suitable for wetland areas and agricultural watersheds in which streams are not very narrow and deep, and meanwhile a relatively fine mesh that can distinguish the streams is preferred.  相似文献   

12.
This paper presents a three-dimensional (3D) mathematical model for suspended load transport in turbulent flows. Based on the stochastic theory of turbulent flow proposed by Dou, numerical schemes of Reynolds stresses for anisotropic turbulent flows are obtained. Instead of a logarithmic law, a specific wall function is used to describe the velocity profile close to wall boundaries. The equations for two-dimensional suspended load motion and sorting of bed material have been improved for a 3D case. Numerical results are in good agreement with the measured data of the Gezhouba Project. The present method has been employed to simulate sediment erosion and deposition in the vicinity of the Three Gorges Dam. The size distribution of the deposits and bed material, and flow and sediment concentration at different times and elevations, are predicted. The results agree well with the observations in physical experiments. Thus, a new method is established for 3D simulation of sediment motion in the vicinity of dams.  相似文献   

13.
Two related problems of sediment hydraulics are addressed: (1) Inception of sediment transport for nearly uniform flow of both uniform and nonuniform sediment beds for two different sediment densities and grain sizes ranging from sand to gravel, and (2) generalized inception conditions if elements are inserted in a plane sediment bed. The Shields’ criterion is formulated with basic quantities involving gravity, viscosity, and densities of the two-phase flow. The results of the analysis relate to the viscous, the transition, and the fully turbulent regimes. The transition regime is verified with extended laboratory experiments. Then, these conditions are used as a basis for formulating a general stability criterion for loose bed hydraulics, and compared to detailed experiments involving pier and square elements located either at the channel side or at its axis. In addition, a generalized densimetric particle Froude number is introduced that accounts for both uniform sediments and mixtures. The engineering application of the present results is straightforward, given that basic parameters of hydraulics, sediment, and fluid are involved.  相似文献   

14.
Evolution of Scour Depth at Circular Bridge Piers   总被引:2,自引:0,他引:2  
Experiments of bridge pier scour are carried out under steady and unsteady clear-water scour conditions with uniform and nonuniform sediments. Around the pier nose, the sediment size variation of surface bed materials is investigated, and a regressed formula is obtained for estimating the mixing layer thickness in terms of median sediment size and geometric standard deviation of grain size distribution. A method based on the mixing layer concept is developed for calculating the equilibrium scour depth in nonuniform sediment. Based on the experimental data of scour rate, a model simulating the scour-depth evolution under steady flow in nonuniform sediment is presented. By analyzing experimental data, a scheme is proposed for computing the scour-depth evolution under unsteady flow.  相似文献   

15.
Stochastic Prediction of Sediment Transport in Sand-Gravel Bed Rivers   总被引:2,自引:0,他引:2  
Classical deterministic bedload transport predictors are applied to sand-gravel bed rivers. The turbulent bed shear stress is modeled according to a probability distribution to obtain realistic bedload transport rates at incipient motion. In extending the predictors to stochastic predictors for nonuniform sediment, many parameters that represent near-bed turbulence and the particle size distribution must be chosen. The parameters that give realistic results are chosen by analyzing the results of a new experimental flume dataset with relatively large water depths. Choosing other combinations of parameters may give equal total bedload transport rates, but at the cost of large errors in fractional transport rates. Attention is given to the hiding-exposure phenomenon and a hindrance effect related to nonuniform sediment. Validation based on two independent field datasets shows that successful predictions of particle sizes near the threshold for motion are feasible using the stochastic approach, while the deterministic approach gives successful predictions well above incipient motion.  相似文献   

16.
A user-friendly total bed-material load transport formula for flow in alluvial channels under equilibrium transport conditions has been developed based on dimensional analysis. The main advantages of this formula are its ease of computation, accuracy in prediction, and the wide range of application. The total sediment discharge gt is computed directly and is linearly related to the new total load transport parameter, TT. The latter involves variables that can be easily measured in field conditions, i.e., flow depth, mean flow velocity, energy slope, median sediment size and density, and water temperature. The factor of proportionality k in the formula has been checked for a wide range of hydraulic conditions and it remains a constant equal to 12.5. Comparisons between the computed and measured total sediment discharge indicate that the predictions are good.  相似文献   

17.
A finite-volume computer code developed at the Institute for Hydromechanics, University of Karlsruhe, has been used to calculate the flow and sediment transport in a laboratory channel with constriction and movable bed. The flow is calculated by solving the fully three dimensional Reynolds-averaged Navier-Stokes equations with k?ε turbulence model. The bed deformation is obtained from an overall mass-balance equation for sediment transport and the bed-load transport is simulated with a nonequilibrium model. The calculated results for flow and scour development in the laboratory channel are compared with experimental measurements. The sensitivity of the simulated results to the nonequilibrian adaptation-length parameter in the nonequilibrium bed-load transport model is investigated systematically, which represents the main contribution of this paper.  相似文献   

18.
3D Numerical Modeling of Flow and Sediment Transport in Open Channels   总被引:4,自引:0,他引:4  
A 3D numerical model for calculating flow and sediment transport in open channels is presented. The flow is calculated by solving the full Reynolds-averaged Navier-Stokes equations with the k ? ε turbulence model. Special free-surface and roughness treatments are introduced for open-channel flow; in particular the water level is determined from a 2D Poisson equation derived from 2D depth-averaged momentum equations. Suspended-load transport is simulated through the general convection-diffusion equation with an empirical settling-velocity term. This equation and the flow equations are solved numerically with a finite-volume method on an adaptive, nonstaggered grid. Bed-load transport is simulated with a nonequilibrium method and the bed deformation is obtained from an overall mass-balance equation. The suspended-load model is tested for channel flow situations with net entrainment from a loose bed and with net deposition, and the full 3D total-load model is validated by calculating the flow and sediment transport in a 180° channel bend with movable bed. In all cases, the agreement with measurements is generally good.  相似文献   

19.
One-Dimensional Modeling of Dam-Break Flow over Movable Beds   总被引:4,自引:0,他引:4  
A one-dimensional model has been established to simulate the fluvial processes under dam-break flow over movable beds. The hydrodynamic model adopts the generalized shallow water equations, which consider the effects of sediment transport and bed change on the flow. The sediment model computes the nonequilibrium transport of bed load and suspended load. The effects of sediment concentration on sediment settling and entrainment are considered in determining the sediment settling velocity and transport capacity. In particular, a correction factor is proposed to modify the Van Rijn formulas of equilibrium bed-load transport rate and near-bed suspended-load concentration for the simulation of sediment transport under high-shear flow conditions. The governing equations are solved by an explicit finite-volume method with the first-order upwind scheme for intercell fluxes. The model has been tested in two experimental cases, with fairly good agreement between simulations and measurements. The sensitivities of the model results to parameters such as the sediment nonequilibrium adaptation length, Manning’s roughness coefficient and the proposed correction factor have been verified. The proposed model has also been compared to an existing model and the results indicate the new model is more reliable.  相似文献   

20.
Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers   总被引:3,自引:0,他引:3  
The paper proposes a semiempirical model to estimate the temporal development of scour depth at cylindrical piers with unexposed foundations. A cylindrical pier with a foundation is considered as nonuniform pier. The concept of primary vortex and the principle of volumetric rate of sediment transport are used to develop a methodology to characterize the rate of evolution of the scour hole at nonuniform cylindrical piers. The model also simulates the entire scouring process at nonuniform cylindrical piers having the discontinuous surface located below the initial bed level. The scouring process includes three zones; viz Zone 1 having the scouring phenomenon similar to that of a uniform pier, Zone 2 in which the scour depth remains unchanged with its value equal to the depth of the top level of foundation below the initial bed level while the dimensions of the scour hole increase, and in Zone 3 the geometry pier foundation influences the scouring process. A concept of superposition using an effective pier diameter is proposed to simulate the scouring process in Zone 3. In addition, the laboratory experiments were conducted to utilize the laboratory results for the validation of the model. The simulated results obtained from the proposed model are in good agreement with the present experimental results and also other experimental data. Also, the effect of unsteadiness of flow is incorporated in the model and the results of the model are compared with the experimental data. The model agrees satisfactorily with the experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号