共查询到19条相似文献,搜索用时 62 毫秒
1.
射频微机电系统技术现状 总被引:8,自引:0,他引:8
较全面地介绍了 RF MEMS 器件、由 RF 器件构成的组件及应用系统,并给出了一些新的典型示例。通过比较 RF MEMS 器件与传统微波器件在性能、尺寸等各方面的差别,可以了解 RF MEMS 技术在相控阵雷达上运用的优势。 相似文献
2.
微光机电系统技术是在微机电系统技术基础之上发展起来的具有多种学科交叉融合特征的前沿高新技术,在该技术上建立的微感知技术是未来微系统技术的核心技术之一.由于微感知技术具有微型化、集成化和智能化的特点,未来在国防军工、精密仪器、特殊工业,以及环境检测等领域将有广泛的应用前景.首先描述了微感知技术的技术特征,同时对当前国内外的微感知技术研究情况进行了介绍,总结了微光机电系统的几个亟待突破的技术问题,并指出了微感知技术面临的挑战.通过对发展微感知技术需要关注问题的思考,对我国微感知技术的发展提出了建议. 相似文献
3.
生物微机电系统 (BioMEMS)集微传感器、微驱动器、微流体系统、微光学系统及微机械元件于一体 ,广泛应用于生物学、医学和生物医学工程等领域 ,是一个新的交叉研究学科。本文概述了BioMEMS的研究内容和发展方向 ,给出了部分BioMEMS研究结果 相似文献
4.
生物微机电系统(BioMEMS)集微传感器、微驱动器、微流体系统、微光学系统及微机械元件于一体,广泛应用于生物学、医学和生物医学工程等领域,是一个新的交叉研究学科.本文概述了BioMEMS的研究内容和发展方向,给出了部分BioMEMS研究结果. 相似文献
5.
傅思生 《激光与光电子学进展》2002,39(5):33-34
硅微型机械是个新兴领域,它正使几乎每一科技领域都变得紧凑。在各种领域中,如化学,汽车,细胞和光通讯工业,硅微型机械正成为许多问题解答的选择,本文介绍什么是微机电系统,它们如何制造以及它们对光波网络系统革命有怎样的潜力,正如光开关,可变吸收体,主动平均器,加/减多路传输器,光交叉互连,增益倾斜平衡器,数据传送器和许多其他元件,正开始在先进光波系统中寻找无所不在的应用,本文将给出这些器件的例子,并描述这种技术可能有数十亿美元市场中所面临的一些挑战。 相似文献
7.
微机电系统(MEMS)是在微电子及微机械等学科基础上发展起来的新兴多学科交叉研究领域,是当今科学技术最具潜力的发展方向之一,而微型流体分析系统是这一研究领域中的热点。本文综述了MEMS技术以及作为MEMS技术一个重要研究方向的微型流体分析系统的起源及其广阔的市场应用前景.并对MEMS产品的市场化存在的问题进行了讨论。MEMS技术及微型流体分析系统的诞生必将对今后的化学、医学及生物学等领域的研究工作产生重大影响。 相似文献
8.
在微机电系统(MEMS)的开发阶段,重点放在器件设计上。现今,多种MEMS器件已商品化,重点开始转移到生产性能优良而价格实惠的器件上,而且要做到测试和封装的成本分别各占总成本的三分之一。这里介绍MEMS器件从开发至大批量生产的不同阶段中有关电学测试的解决方案。 不同阶段的测试要求 对于MEMS器件的测试要求,在产品研究和制造的不同阶段有明显的差异,而且,在每个阶段中性能测试的意义也不相同。 ●研究和开发阶段,要求测试系统运行全面的实验室 相似文献
9.
微系统技术发展和应用 总被引:1,自引:0,他引:1
作为军事装备自主可控和信息化武器系统微型化、集成化、智能化发展的重要支撑,微系统技术在军事竞争中具有重要的战略意义,受到国外军事强国的高度重视,被美国国防先期研究计划局列为战略发展重点,并设立专门办公室加强技术研究和应用开发,不断加快微系统的发展,推进在武器装备系统中的应用。文中从微系统研究项目、元器件技术、集成技术、算法与架构、热管理技术等方面介绍了国外微系统发展现状,描述了微系统在雷达、通信、电子战等领域的应用情况,分析了微系统技术发展方向和研究重点,提出了我国发展微系统技术的建议。 相似文献
10.
11.
M. Birkholz K.‐E. Ehwald P. Kulse J. Drews M. Fröhlich U. Haak M. Kaynak E. Matthus K. Schulz D. Wolansky 《Advanced functional materials》2011,21(9):1652-1656
A standard complementary metal‐oxide‐semiconductor (CMOS) process is successfully modified to encompass the preparation of suspended TiN membranes of only 50 nm thickness from one of the metal layer stacks of the back‐end flow. The layers’ elastomechanical constants are determined with high precision by laser Doppler vibrometry. Residual stress gradients are compensated and a state of moderate tensile strain is introduced into the membranes. Test systems of TiN beams and bridges operating in a capacitive coupling scheme are optimized for the low voltage range attainable with CMOS devices. TiN actuators are particularly suited for applications in biotechnology like sensing of pressure or viscosity in microfluidic devices due to their high corrosion resistance in liquid electrolyte surroundings. The established inclusion of the process in a CMOS pilot line enables the production of cheap and monolithically integrated microelectromechanical systems (MEMS) and bio‐microelectromechanical systems (BioMEMS) devices. 相似文献
12.
13.
2014年4月13日至16日,第9届IEEE国际纳米/微米工程及分子系统大会(IEEE—NEMS2014)在美国夏威夷召开,来自世界各地的300多位专家、学者齐聚一堂,分享其在徽纳米科技领域的最新研究成果。本文从生物医疗应用、纳米自组装技术、纳米新材料、新型微传感器与执行器等4个角度,详细介绍和阐述本次会议上涌现的徽纳米科技领域的研究成果,并对其将在人类生产生活中所起到的重要作用和发展趋势进行分析和展望。 相似文献
14.
Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices 总被引:1,自引:0,他引:1
Bharat Bhushan 《Microelectronic Engineering》2007,84(3):387-412
The micro/nanoelectromechanical systems (MEMS/NEMS) need to be designed to perform expected functions typically in millisecond to picosecond range. Expected life of the devices for high speed contacts can vary from few hundred thousand to many billions of cycles, e.g., over a hundred billion cycles for digital micromirror devices (DMDs), which puts serious requirements on materials. For BioMEMS/BioNEMS, adhesion between biological molecular layers and the substrate, and friction and wear of biological layers may be important. There is a need for development of a fundamental understanding of adhesion, friction/stiction, wear, and the role of surface contamination, and environment. Most mechanical properties are known to be scale dependent. Therefore, the properties of nanoscale structures need to be measured. MEMS/NEMS materials need to exhibit good mechanical and tribological properties on the micro/nanoscale. There is a need to develop lubricants and identify lubrication methods that are suitable for MEMS/NEMS. Methods need to be developed to enhance adhesion between biomolecules and the device substrate. Component-level studies are required to provide a better understanding of the tribological phenomena occurring in MEMS/NEMS. The emergence of micro/nanotribology and atomic force microscopy-based techniques has provided researchers a viable approach to address these problems. This paper presents a review of micro/nanoscale adhesion, friction, and wear studies of materials and lubrication studies for MEMS/NEMS and BioMEMS/BioNEMS, and component-level studies of stiction phenomena in MEMS/NEMS devices. 相似文献
15.
Pan J.Y. 《Proceedings of the IEEE. Institute of Electrical and Electronics Engineers》2004,92(1):174-184
The emerging field of biomedical microelectromechanical systems (bioMEMS) has the potential to revolutionize how drugs are discovered, how diseases are diagnosed, and how treatments are administered. Nevertheless, that potential is unlikely to translate into commercial success unless bioMEMS designers can prove that such novel functionality can be delivered each and every time without failure. The life-and-death ramifications of a system failure make absolute reliability a moral and regulatory requirement for many medical applications. This paper reveals the reliability hurdles that must be overcome when systems are used for pharmaceutical research, clinical diagnostics, or implantation into humans. Special attention is given to challenges that are likely to be exacerbated for miniaturized devices. Techniques useful for characterizing, minimizing, and monitoring for failures are also described. A strategy for addressing reliability problems is also presented. By refining bioMEMS for the research laboratory first and then applying the experience gained from that environment to clinical diagnostics applications, bioMEMS does not need to confront head-on the regulatory hurdles and established technologies that could otherwise impede its entry. Similarly, development of more robust, miniaturized clinical diagnostics systems can simplify the entry of implanted bioMEMS. 相似文献
16.
Planar excitation of Goubau Transmission Lines for THz BioMEMS 总被引:1,自引:0,他引:1
Treizebre A. Akalin T. Bocquet B. 《Microwave and Wireless Components Letters, IEEE》2005,15(12):886-888
We propose and demonstrate an original planar excitation of a single wire transmission line also known as Goubau-Line (G-Line). The excitation is based on an electromagnetic transition between a coplanar waveguide and the desired G-line in a planar configuration. We present some characteristics for this line such as its electromagnetic spatial distribution, its velocity, and results in the frequency domain analysis for the transitions. We will also show some results concerning the shape of the G-line and its influence on the transmission level. From these results, we show that there is a great interest for these structures in the field of biological characterization. 相似文献
17.
A BioMEMS review: MEMS technology for physiologically integrated devices 总被引:11,自引:0,他引:11
GRAYSON A.C.R. SHAWGO R.S. JOHNSON A.M. FLYNN N.T. YAWEN LI CIMA M.J. LANGER R. 《Proceedings of the IEEE. Institute of Electrical and Electronics Engineers》2004,92(1):6-21
MEMS devices are manufactured using similar microfabrication techniques as those used to create integrated circuits. They often, however, have moving components that allow physical or analytical functions to be performed by the device. Although MEMS can be aseptically fabricated and hermetically sealed, biocompatibility of the component materials is a key issue for MEMS used in vivo. Interest in MEMS for biological applications (BioMEMS) is growing rapidly, with opportunities in areas such as biosensors, pacemakers, immunoisolation capsules, and drug delivery. The key to many of these applications lies in the leveraging of features unique to MEMS (for example, analyte sensitivity, electrical responsiveness, temporal control, and feature sizes similar to cells and organelles) for maximum impact. In this paper, we focus on how the biological integration of MEMS and other implantable devices can be improved through the application of microfabrication technology and concepts. Innovative approaches for improved physical and chemical integration of systems with the body are reviewed. An untapped potential for MEMS may lie in the area of nervous and endocrine system actuation, whereby the ability of MEMS to deliver potent drugs or hormones, combined with their precise temporal control, may provide new treatments for disorders of these systems. 相似文献
18.
Dae‐Sik Lee Hyoung Gil Choi Kwang Hyo Chung Bun Yeoul Lee Hyeon‐Bong Pyo Hyun C. Yoon 《ETRI Journal》2007,29(5):667-669
This letter presents a smart integrated microfluidic device which can be applied to actively immobilize proteins on demand. The active component in the device is a temperature‐controllable microelectrode array with a smart polymer film, poly(N‐isopropylacrylamide) (PNIPAAm) which can be thermally switched between hydrophilic and hydrophobic states. It is integrated into a micro hot diaphragm having an integrated micro heater and temperature sensors on a 2‐micrometer‐thick silicon oxide/silicon nitride/silicon oxide (O/N/O) template. Only 36 mW is required to heat the large template area of 2 mm×16 mm to 40°C within 1 second. To relay the stimulus‐response activity to the microelectrode surface, the interface is modified with a smart polymer. For a model biomolecular affinity test, an anti‐6‐(2, 4‐dinitrophenyl) aminohexanoic acid (DNP) antibody protein immobilization on the microelectrodes is demonstrated by fluorescence patterns. 相似文献
19.
自组装及系统芯片浅介及其在微传感技术中的应用 总被引:1,自引:0,他引:1
自组装(Self-assemblv)是一种新型的微件装备技术,它依拟种微型力(重力,毛细力等)将微型器件(甚至是分子,原子或团簇)自动组装到基底上.统芯片(System-On-a-Chip)是一种集成技术,它是在保证应用系统中各个模块之间兼容的基础上,实现尽可能多功能模块的集成化与微型化. 相似文献