首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
In this study, we investigated the induction of cellular gene expression by the Epstein-Barr Virus (EBV) latent membrane protein 1 (LMP1). Previously, LMP1 was shown to induce the expression of ICAM-1, LFA-3, CD40, and EBI3 in EBV-negative Burkitt lymphoma (BL) cells and of the epidermal growth factor receptor (EGF-R) in epithelial cells. We now show that LMP1 expression also increased Fas and tumor necrosis factor receptor-associated factor 1 (TRAF1) in BL cells. LMP1 mediates NF-kappaB activation via two independent domains located in its C-terminal cytoplasmic tail, a TRAF-interacting site that associates with TRAF1, -2, -3, and -5 through a PXQXT/S core motif and a TRADD-interacting site. In EBV-transformed B cells or transiently transfected BL cells, significant amounts of TRAF1, -2, -3, and -5 are associated with LMP1. In epithelial cells, very little TRAF1 is expressed, and only TRAF2, -3, and -5, are significantly complexed with LMP1. The importance of TRAF binding to the PXQXT/S motif in LMP1-mediated gene induction was studied by using an LMP1 mutant that contains alanine point mutations in this motif and fails to associate with TRAFs. This mutant, LMP1(P204A/Q206A), induced 60% of wild-type LMP1 NF-kappaB activation and had approximately 60% of wild-type LMP1 effect on Fas, ICAM-1, CD40, and LFA-3 induction. In contrast, LMP1(P204A/Q206A) was substantially more impaired in TRAF1, EBI3, and EGF-R induction. Thus, TRAF binding to the PXQXT/S motif has a nonessential role in up-regulating Fas, ICAM-1, CD40, and LFA-3 expression and a critical role in up-regulating TRAF1, EBI3, and EGF-R expression. Further, D1 LMP1, an LMP1 mutant that does not aggregate failed to induce TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 expression confirming the essential role for aggregation in LMP1 signaling. Overexpression of a dominant form of IkappaBalpha blocked LMP1-mediated TRAF1, EBI3, Fas, ICAM-1, CD40, and LFA-3 up-regulation, indicating that NF-kappaB is an important component of LMP1-mediated gene induction from both the TRAF- and TRADD-interacting sites.  相似文献   

4.
The TRAF3 molecule interacts with the cytoplasmic carboxyl terminus (COOH terminus) of the Epstein-Barr virus-encoded oncogene LMP-1. NF-kappaB activation is a downstream signaling event of tumor necrosis factor receptor-associated factor (TRAF) molecules in other signaling systems (CD40 for example) and is an event caused by LMP-1 expression. One region capable of TRAF3 interaction in LMP-1 is the membrane-proximal 45 amino acids (188-242) of the COOH terminus. We show that this region contains the only site for binding of TRAF3 in the 200-amino acid COOH terminus of LMP-1. The site also binds TRAF2 and TRAF5, but not TRAF6. TRAF3 binds to critical residues localized between amino acids 196 and 212 (HHDDSLPHPQQATDDSG), including the PXQX(T/S) motif, that share limited identity to the CD40 receptor TRAF binding site (TAAPVQETL). Mutation of critical residues in the TRAF3 binding site of LMP-1 that prevents binding of TRAF2, TRAF3, and TRAF5 does not affect NF-kappaB-activating potential. Deletion mapping localized the major NF-kappaB activating region of LMP-1 to critical residues in the distal 4 amino acids of the COOH terminus (383-386). Therefore, TRAF3 binding and NF-kappaB activation occur through two separate motifs at opposite ends of the LMP-1 COOH-terminal sequence.  相似文献   

5.
Various members of the tumor necrosis factor (TNF) receptor superfamily interact directly with signaling molecules of the TNF receptor-associated factor (TRAF) family to activate nuclear factor kappaB (NF-kappaB) and the c-Jun N-terminal kinase (JNK) pathway. The receptor activator of NF-kappaB (RANK), a recently described TNF receptor family member, and its ligand, RANKL, promote survival of dendritic cells and differentiation of osteoclasts. RANK contains 383 amino acids in its intracellular domain (residues 234-616), which contain three putative TRAF-binding domains (termed I, II, and III). In this study, we set out to identify the region of RANK needed for interaction with TRAF molecules and for stimulation of NF-kappaB and JNK activity. We constructed epitope-tagged RANK (F-RANK616) and three C-terminal truncations, F-RANK330, F-RANK427, and F-RANK530, lacking 85, 188, and 285 amino acids, respectively. From this deletion analysis, we determined that TRAF2, TRAF5, and TRAF6 interact with RANK at its C-terminal 85-amino acid tail; the binding affinity appeared to be in the order of TRAF2 > TRAF5 > TRAF6. Furthermore, overexpression of RANK stimulated JNK and NF-kappaB activation. When the C-terminal tail, which is necessary for TRAF binding, was deleted, the truncated RANK receptor was still capable of stimulating JNK activity but not NF-kappaB, suggesting that interaction with TRAFs is necessary for NF-kappaB activation but not necessary for activation of the JNK pathway.  相似文献   

6.
7.
Through specific interactions with members of the tumor necrosis receptor (TNFR) family, adapter molecules such as the serine/threonine (Ser/Thr) kinase RIP mediate divergent signaling pathways including NF-kappaB activation and cell death. In this study, we have identified and characterized a novel 61-kDa protein kinase related to RIP that is a component of both the TNFR-1 and the CD40 signaling complexes. Receptor interacting protein-2 (RIP2) contains an N-terminal domain with homology to Ser/Thr kinases and a C-terminal caspase activation and recruitment domain (CARD), a homophilic interaction motif that mediates the recruitment of caspase death proteases. Overexpression of RIP2 signaled both NF-kappaB activation and cell death. Mutational analysis revealed the pro-apoptotic function of RIP2 to be restricted to its C-terminal CARD domain, whereas the intact molecule was necessary for NF-kappaB activation. RIP2 interacted with other members of the TNFR-1 signaling complex, including inhibitor of apoptosis protein cIAP1 and with members of the TNFR-associated factor (TRAF) family, specifically TRAF1, TRAF5, and TRAF6, but not with TRAF2, TRAF3, or TRAF4. These TRAF interactions mediate the recruitment of RIP2 to receptor signaling complexes.  相似文献   

8.
CD40 engagement induces a variety of functional outcomes following association with adaptor molecules of the TNF receptor-associated factor (TRAF) family. Whereas TRAF2, -5, and -6 initiate NF-kappaB activation, the outcomes of TRAF3-initiated signaling are less characterized. To delineate CD40-induced TRAF3-dependent events, Ramos B cells stably transfected with a dominant negative TRAF3 were stimulated with membranes expressing recombinant CD154/CD40 ligand. In the absence of TRAF3 signaling, activation of p38 and control of Ig production were abrogated, whereas Jun N-terminal kinase activation and secretion of IL-10, lymphotoxin-alpha, and TNF-alpha were partially blocked. By contrast, induction of apoptosis, activation of NF-kappaB, generation of granulocyte-macrophage CSF, and up-regulation of CD54, MHC class II, and CD95 were unaffected by the TRAF3 dominant negative. Together, these results indicate that TRAF3 initiates independent signaling pathways via p38 and JNK that are associated with specific functional outcomes.  相似文献   

9.
10.
11.
12.
CD27 is a member of the tumor necrosis factor (TNF) receptor superfamily and is expressed on T, B, and NK cells. The signal via CD27 plays pivotal roles in T-T and T-B cell interactions. Here we demonstrate that overexpression of CD27 activates NF-kappaB and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK). Deletion analysis of the cytoplasmic domain of CD27 revealed that the C-terminal PIQEDYR motif was indispensable for both NF-kappaB and SAPK/JNK activation and was also required for the interaction with TNF receptor-associated factor (TRAF) 2 and TRAF5, both of which have been implicated in NF-kappaB activation by members of the TNF-R superfamily. Co-transfection of a dominant negative TRAF2 or TRAF5 blocked NF-kappaB and SAPK/JNK activation induced by CD27. Recently, a TRAF2-interacting kinase has been identified, termed NF-kappaB-inducing kinase (NIK). A kinase-inactive mutant NIK blocked CD27-, TRAF2-, and TRAF5-mediated NF-kappaB and SAPK/JNK activation. These results indicate that TRAF2 and TRAF5 are involved in NF-kappaB and SAPK/JNK activation by CD27, and NIK is a common downstream kinase of TRAF2 and TRAF5 for NF-kappaB and SAPK/JNK activation.  相似文献   

13.
14.
15.
16.
17.
The Epstein-Barr virus (EBV)-encoded LMP1 protein is an important component of the process of transformation by EBV. LMP1 is essential for transformation of B lymphocytes, most likely because of its profound effects on cellular gene expression. Although LMP1 is expressed in the majority of nasopharyngeal carcinoma (NPC) tumors, the effect of LMP1 on cellular gene expression and its contribution to the development of malignancy in epithelial cells is largely unknown. In this study the effects of LMP1 on the expression and tyrosine kinase activity of the epidermal growth factor receptor (EGFR) were investigated in C33A human epithelial cells. Stable or transient expression of LMP1 in C33A cells increased expression of the EGFR at both the protein and mRNA levels. In contrast, expression of the EGFR was not induced by LMP1 in EBV-infected B lymphocytes. Stimulation of LMP1-expressing C33A cells with epidermal growth factor (EGF) caused rapid tyrosine phosphorylation of the EGFR (pp170) as well as several other proteins, including pp120, pp85, pp75, and pp55, indicating that the EGFR induced by LMP1 is functional. LMP1 also induced expression of the A20 gene in C33A epithelial cells. In C33A cells, LMP1 expression increased the proliferative response to EGF, as LMP1-expressing C33A cells continued to increase in number when plated in serum-free media supplemented with EGF, while the neo control cells exhibited very low levels of viability and did not proliferate. Immunoblot analysis of protein extracts from nude mouse-passaged NPC tumors also demonstrated that the EGFR is overexpressed in primary NPC tumors as well as those passaged in nude mice. This study suggests that the alteration in the growth patterns of C33A cells expressing LMP1 is a result of increased proliferative signals due to enhanced EGFR expression, as well as protection from cell death due to LMP1-induced A20 expression. The induction of EGFR and A20 by LMP1 may be an important component of EBV infection in epithelial cells and could contribute to the development of epithelial malignancies such as NPC.  相似文献   

18.
A key step by which tumor necrosis factor (TNF) signals the activation of nuclear factor-kappaB (NF-kappaB) and the stress-activated protein kinase (SAPK, also called c-Jun N-terminal kinase or JNK) is the recruitment to the TNF receptor of TNF receptor-associated factor 2 (TRAF2). However, the subsequent steps in TRAF2-induced SAPK and NF-kappaB activation remain unresolved. Here we report the identification of a TNF-responsive serine/threonine protein kinase termed GCK related (GCKR) that likely signals via mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase kinase 1 (MEKK1) to activate the SAPK pathway. TNF, TRAF2, and ultraviolet (UV) light, which in part uses the TNF receptor signaling pathway, all increased GCKR activity. A TRAF2 mutant, which inhibits both TRAF2-induced NF-kappaB and SAPK activation, blocked TNF-induced GCKR activation. Finally, interference with GCKR expression impeded TRAF2- and TNF-induced SAPK activation but not that of NF-kappaB. This suggests a divergence in the TNF signaling pathway that leads to SAPK and NF-kappaB activation, which is located downstream of TRAF2 but upstream of GCKR.  相似文献   

19.
20.
We have investigated the activation of the p38 MAPK pathway in response to CD40 engagement in multiple B cell lines and in human tonsillar B cells to define the role of p38 MAPK in proliferation, NF-kappaB activation and gene expression. Cross-linking CD40 rapidly stimulates both p38 MAPK and its downstream effector, MAPKAPK-2. Inhibition of p38 MAPK activity in vivo with the specific cell-permeable inhibitor, SB203580, under conditions that completely prevented MAPKAPK-2 activation, strongly perturbed CD40-induced tonsillar B cell proliferation while potentiating the B cell receptor (BCR)-driven proliferative response. SB203580 also significantly reduced expression of a reporter gene driven by a minimal promoter containing four NF-kappaB elements, indicating a requirement for the p38 MAPK pathway in CD40-induced NF-kappaB activation. However, CD40-mediated NF-kappaB binding was not affected by SB203580, suggesting that NF-kappaB may not be a direct target for the CD40-induced p38 MAPK pathway. In addition, SB203580 selectively reduced CD40-induced CD54/ICAM-1 expression, whereas CD40-dependent expression of CD40 and CD95/Fas and four newly defined CD40-responsive genes cIAP2, TRAF1, TRAF4/CART and DR3 were unaffected. Our observations show that the p38 MAPK pathway is required for CD40-induced proliferation and that CD40 induces gene expression via both p38 MAPK-dependent and -independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号