首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Lobe identification in computed tomography (CT) examinations is often an important consideration during the diagnostic process as well as during treatment planning because of their relative independence of each other in terms of anatomy and function. In this paper, we present a new automated scheme for segmenting lung lobes depicted on 3-D CT examinations. The unique characteristic of this scheme is the representation of fissures in the form of implicit functions using Radial Basis Functions (RBFs), capable of seamlessly interpolating “holes” in the detected fissures and smoothly extrapolating the fissure surfaces to the lung boundaries resulting in a “natural” segmentation of lung lobes. A previously developed statistically based approach is used to detect pulmonary fissures and the constraint points for implicit surface fitting are selected from detected fissure surfaces in a greedy manner to improve fitting efficiency. In a preliminary assessment study, lobe segmentation results of 65 chest CT examinations, five of which were reconstructed with three section thicknesses of 0.625 mm, 1.25 mm, and 2.5 mm, were subjectively and independently evaluated by two experienced chest radiologists using a five category rating scale (i.e., excellent, good, fair, poor, and unacceptable). Thirty-three of 65 examinations (50.8%) with a section thickness of 0.625 mm were rated as either “excellent” or “good” by both radiologists and only one case (1.5%) was rated by both radiologists as “poor” or “unacceptable.” Comparable performance was obtained with a slice thickness of 1.25 mm, but substantial performance deterioration occurred in examinations with a section thickness of 2.5 mm. The advantages of this scheme are its full automation, relative insensitivity to fissure completeness, and ease of implementation.   相似文献   

2.
彭圆圆  肖昌炎 《电子学报》2018,46(6):1319-1326
CT(Computer Tomography)图像中自动分割肺裂是很困难的,肺裂往往存在不完整、形变、断裂和附裂等现象.本文提出一种融合肺部解剖结构特征来实现自动分割肺裂的方法.首先结合肺部气管和动脉血管信息定位肺裂感兴趣区域.然后利用肺裂方向信息增强肺裂,并利用多剖面滤波器滤除噪声从而对肺裂进行预分割.最后融合已定位的肺裂感兴趣区域和肺裂预分割结果来自动分割肺裂.与人工参考对比,提出的算法在人体左肺和右肺中分割的肺裂的F1-score中值分别为0.881和0.878.  相似文献   

3.
Identification of pulmonary fissures, which form the boundaries between the lobes in the lungs, may be useful during clinical interpretation of computed tomography (CT) examinations to assess the early presence and characterization of manifestation of several lung diseases. Motivated by the unique nature of the surface shape of pulmonary fissures in 3-D space, we developed a new automated scheme using computational geometry methods to detect and segment fissures depicted on CT images. After a geometric modeling of the lung volume using the marching cubes algorithm, Laplacian smoothing is applied iteratively to enhance pulmonary fissures by depressing nonfissure structures while smoothing the surfaces of lung fissures. Next, an extended Gaussian image based procedure is used to locate the fissures in a statistical manner that approximates the fissures using a set of plane ldquopatchesrdquo. This approach has several advantages such as independence of anatomic knowledge of the lung structure except the surface shape of fissures, limited sensitivity to other lung structures, and ease of implementation. The scheme performance was evaluated by two experienced thoracic radiologists using a set of 100 images (slices) randomly selected from 10 screening CT examinations. In this preliminary evaluation 98.7% and 94.9% of scheme segmented fissure voxels are within 2 mm of the fissures marked independently by two radiologists in the testing image dataset. Using the scheme detected fissures as reference, 89.4% and 90.1% of manually marked fissure points have distance les2 mm to the reference suggesting a possible under-segmentation of the scheme. The case-based root mean square (rms) distances (ldquoerrorsrdquo) between our scheme and the radiologist ranged from 1.48plusmn0.92 to 2.04plusmn3.88 mm. The discrepancy of fissure detection results between the automated scheme and either radiologist is smaller in this dataset than the interreader variability.  相似文献   

4.
This paper describes a fast and fully automatic method for liver vessel segmentation on computerized tomography scan preoperative images. The basis of this method is the introduction of a 3-D geometrical moment-based detector of cylindrical shapes within the minimum-cut/maximum-flow energy minimization framework. This method represents an original way to introduce a data term as a constraint into the widely used Boykov’s graph cuts algorithm, and hence, to automate the segmentation. The method is evaluated and compared with others on a synthetic dataset. Finally, the relevancy of our method regarding the planning of a necessarily accurate percutaneous high-intensity focused ultrasound surgical operation is demonstrated with some examples.   相似文献   

5.
针对肺结节分割中存在的自动化程度低、较少考虑空间结构以及粘附型肺结节分割不充分问题,提出了一种基于空间分布的三维自动化肺结节分割算法.该算法首先利用C-means聚类算法分割出肺实质,然后根据肺结节空间分布的差异性将其分为3类:孤立性肺结节、胸膜粘附性肺结节、血管粘附性肺结节,并对3种不同类型的肺结节分别采用基于连通性、灰度下降和散度差异的分割算法进行分割,70个肺结节(其中孤立性肺结节38个,血管粘附性肺结节17个,胸膜粘附性肺结节15个)CT图像的实验结果表明,算法能够准确、自动地分割出3种不同部位的肺结节.  相似文献   

6.
High-resolution X-ray computed tomography (CT) imaging is routinely used for clinical pulmonary applications. Since lung function varies regionally and because pulmonary disease is usually not uniformly distributed in the lungs, it is useful to study the lungs on a lobe-by-lobe basis. Thus, it is important to segment not only the lungs, but the lobar fissures as well. In this paper, we demonstrate the use of an anatomic pulmonary atlas, encoded with a priori information on the pulmonary anatomy, to automatically segment the oblique lobar fissures. Sixteen volumetric CT scans from 16 subjects are used to construct the pulmonary atlas. A ridgeness measure is applied to the original CT images to enhance the fissure contrast. Fissure detection is accomplished in two stages: an initial fissure search and a final fissure search. A fuzzy reasoning system is used in the fissure search to analyze information from three sources: the image intensity, an anatomic smoothness constraint, and the atlas-based search initialization. Our method has been tested on 22 volumetric thin-slice CT scans from 12 subjects, and the results are compared to manual tracings. Averaged across all 22 data sets, the RMS error between the automatically segmented and manually segmented fissures is 1.96 +/- 0.71 mm and the mean of the similarity indices between the manually defined and computer-defined lobe regions is 0.988. The results indicate a strong agreement between the automatic and manual lobe segmentations.  相似文献   

7.
腹部CT图像肝脏肿瘤分割是进行肝脏疾病诊断、手术规划和放射治疗的重要前提。针对肝脏肿瘤灰度异质、纹理丰富、边界模糊等因素引起的分割困难,该文提出基于级联Dense-Unet和图割的自动精确鲁棒分割方法。首先运用级联的Dense-UNet获取肝脏肿瘤初始分割结果及感兴趣区域,然后利用图像像素级和区域级特征,分别构建可有效区分肿瘤与非肿瘤的灰度模型和概率模型,并将其融入图割能量函数,进一步精确分割感兴趣区域中的肿瘤组织。最后分别采用LiTS和3Dircadb公共数据库作为训练集与测试集进行实验,并与现有多种自动分割方法进行了比较。结果表明,提出方法可有效分割CT图像中灰度、形状、大小、位置各异的肝脏肿瘤,能提取更精确的肿瘤边界,尤其对于对比度低、边界模糊的肿瘤具有明显优势。  相似文献   

8.
The lungs exchange air with the external environment via the pulmonary airways. Computed tomography (CT) scanning can be used to obtain detailed images of the pulmonary anatomy, including the airways. These images have been used to measure airway geometry, study airway reactivity, and guide surgical interventions. Prior to these applications, airway segmentation can be used to identify the airway lumen in the CT images. Airway tree segmentation can be performed manually by an image analyst, but the complexity of the tree makes manual segmentation tedious and extremely time-consuming. We describe a fully automatic technique for segmenting the airway tree in three-dimensional (3-D) CT images of the thorax. We use grayscale morphological reconstruction to identify candidate airways on CT slices and then reconstruct a connected 3-D airway tree. After segmentation, we estimate airway branchpoints based on connectivity changes in the reconstructed tree. Compared to manual analysis on 3-mm-thick electron-beam CT images, the automatic approach has an overall airway branch detection sensitivity of approximately 73%.  相似文献   

9.
Computed Tomography (CT) images are widely used for diagnosis of liver diseases and volume measurement for liver surgery and transplantation. Segmentation of liver and lesion is regarded as a major primary step in computer-aided diagnosis of liver diseases. Lesion alone cannot be segmented automatically from the abdominal CT image since there are tissues external to the liver with similar intensity to the lesions. Therefore, it is necessary to segment the liver first so that lesion can then be segmented accurately from it. In this paper, an approach for automatic and effective segmentation of liver and lesion from CT images needed for computer-aided diagnosis of liver is proposed. The method uses confidence connected region growing facilitated by preprocessing and postprocessing functions for automatic segmentation of liver and Alternative Fuzzy C-Means clustering for lesion segmentation. The algorithm is quantitatively evaluated by comparing automatic segmentation results to the manual segmentation results based on volume measurement error, figure of merit, spatial overlap, false positive error, false negative error, and visual overlap.  相似文献   

10.
肺实质分割结果的准确性在实际临床应用中具有非常重要的意义。但由于肺结节的位置、大小、形状的不规则性,肺部病变的多样性,以及人体胸部解剖结构的明显差异等,使得各类分割方法不能统一地适用于所有的胸部CT图像,所以对于肺实质分割方法的研究仍具有很大的挑战。该文在国内外研究分析的基础上提出基于3D区域增长法与改进的凸包修补算法相结合的全肺分割方法。在3D区域增长法的粗分割基础上,对分割的结果进行细化工作,通过连通域标记法与形态学方法相结合去除气管和主支气管,得到初步的肺实质掩膜,最后应用改进的凸包算法对肺部轮廓进行修补平滑,最终得到肺部分割结果。通过与凸包算法及滚球法相对比,证明该文所提改进的凸包算法能够有效地修补肺部轮廓凹陷,修补后的结果分割精度较高。  相似文献   

11.
3-D segmentation algorithm of small lung nodules in spiral CT images.   总被引:2,自引:0,他引:2  
Computed tomography (CT) is the most sensitive imaging technique for detecting lung nodules, and is now being evaluated as a screening tool for lung cancer in several large samples studies all over the world. In this report, we describe a semiautomatic method for 3-D segmentation of lung nodules in CT images for subsequent volume assessment. The distinguishing features of our algorithm are the following. 1) The user interaction process. It allows the introduction of the knowledge of the expert in a simple and reproducible manner. 2) The adoption of the geodesic distance in a multithreshold image representation. It allows the definition of a fusion--segregation process based on both gray-level similarity and objects shape. The algorithm was validated on low-dose CT scans of small nodule phantoms (mean diameter 5.3--11 mm) and in vivo lung nodules (mean diameter 5--9.8 mm) detected in the Italung-CT screening program for lung cancer. A further test on small lung nodules of Lung Image Database Consortium (LIDC) first data set was also performed. We observed a RMS error less than 6.6% in phantoms, and the correct outlining of the nodule contour was obtained in 82/95 lung nodules of Italung-CT and in 10/12 lung nodules of LIDC first data set. The achieved results support the use of the proposed algorithm for volume measurements of lung nodules examined with low-dose CT scanning technique.  相似文献   

12.
CT检测在人体肺部疾病的诊疗中起着重要作用,快速完整地分割出肺实质区域已成为定性、定量诊断肺部疾病的重要手段。文章在分析研究大量胸部CT图像的基础上,提出一种新的肺实质分割方法:将Mean-Shift算法结合Snake模型分割出肺实质区域。实验证明,文章所提方法精确度高、分割效果完整,满足临床诊疗的要求。  相似文献   

13.
基于相似图像的肺结节CT图像检索辅助诊断对肺结节的发现有着重要的作用。肺结节的诊断难度较大,通常需要充分利用图像的边缘、分叶、毛刺、纹理等各类信息。文中针对目前基于哈希方法的肺结节检索中存在的不能充分利用图像分割信息从而导致部分信息丢失问题做出了改进,提出了一种基于图像分割的肺结节图像哈希检索方法。实验结果表明,在72位哈希码长度时,达到了85.3%的平均准确率。并且,将文中图像分割模块应用于其他哈希检索方法时,平均准确率皆有一定的提升。  相似文献   

14.
In this paper, an effective model-based approach for computer-aided kidney segmentation of abdominal CT images with anatomic structure consideration is presented. This automatic segmentation system is expected to assist physicians in both clinical diagnosis and educational training. The proposed method is a coarse to fine segmentation approach divided into two stages. First, the candidate kidney region is extracted according to the statistical geometric location of kidney within the abdomen. This approach is applicable to images of different sizes by using the relative distance of the kidney region to the spine. The second stage identifies the kidney by a series of image processing operations. The main elements of the proposed system are: 1) the location of the spine is used as the landmark for coordinate references; 2) elliptic candidate kidney region extraction with progressive positioning on the consecutive CT images; 3) novel directional model for a more reliable kidney region seed point identification; and 4) adaptive region growing controlled by the properties of image homogeneity. In addition, in order to provide different views for the physicians, we have implemented a visualization tool that will automatically show the renal contour through the method of second-order neighborhood edge detection. We considered segmentation of kidney regions from CT scans that contain pathologies in clinical practice. The results of a series of tests on 358 images from 30 patients indicate an average correlation coefficient of up to 88% between automatic and manual segmentation.  相似文献   

15.
雷雨婷  张东  杨双 《半导体光电》2021,42(4):585-589, 595
针对图像噪声以及血管、支气管等因素引起的肺分割困难的问题,提出了一种基于逻辑校准的多分类残差网络分割算法.该算法将图像区域划分为肺、背景及边界三类,通过扩大不同类型间的差异来提升分割准确率.算法先将图像分割为固定尺寸区域,然后利用残差网络提取纹理特征进行分类训练与测试,实现粗分割.最后对边界区域阈值处理实现细分割.利用公开数据集对该算法进行了测试,实验结果表明,此分割算法在召回率、精确率以及交并比等方面均优于当下前沿的分割网络之一的U-Net,分别达到99.79%,98.13%和97.83%,可为后续的肺部疾病临床诊断提供参考依据.  相似文献   

16.
Automatic image processing methods are a prerequisite to efficiently analyze the large amount of image data produced by computed tomography (CT) scanners during cardiac exams. This paper introduces a model-based approach for the fully automatic segmentation of the whole heart (four chambers, myocardium, and great vessels) from 3-D CT images. Model adaptation is done by progressively increasing the degrees-of-freedom of the allowed deformations. This improves convergence as well as segmentation accuracy. The heart is first localized in the image using a 3-D implementation of the generalized Hough transform. Pose misalignment is corrected by matching the model to the image making use of a global similarity transformation. The complex initialization of the multicompartment mesh is then addressed by assigning an affine transformation to each anatomical region of the model. Finally, a deformable adaptation is performed to accurately match the boundaries of the patient's anatomy. A mean surface-to-surface error of 0.82 mm was measured in a leave-one-out quantitative validation carried out on 28 images. Moreover, the piecewise affine transformation introduced for mesh initialization and adaptation shows better interphase and interpatient shape variability characterization than commonly used principal component analysis.   相似文献   

17.
Automated segmentation of acetabulum and femoral head from 3-d CT images   总被引:2,自引:0,他引:2  
This paper describes several new methods and software for automatic segmentation of the pelvis and the femur, based on clinically obtained multislice computed tomography (CT) data. The hip joint is composed of the acetabulum, cavity of the pelvic bone, and the femoral head. In vivo CT data sets of 60 actual patients were used in the study. The 120 (60 /spl times/ 2) hip joints in the data sets were divided into four groups according to several key features for segmentation. Conventional techniques for classification of bony tissues were first employed to distinguish the pelvis and the femur from other CT tissue images in the hip joint. Automatic techniques were developed to extract the boundary between the acetabulum and the femoral head. An automatic method was built up to manage the segmentation task according to image intensity of bone tissues, size, center, shape of the femoral heads, and other characters. The processing scheme consisted of the following five steps: 1) preprocessing, including resampling 3-D CT data by a modified Sine interpolation to create isotropic volume and to avoid Gibbs ringing, and smoothing the resulting images by a 3-D Gaussian filter; 2) detecting bone tissues from CT images by conventional techniques including histogram-based thresholding and binary morphological operations; 3) estimating initial boundary of the femoral head and the joint space between the acetabulum and the femoral head by a new approach utilizing the constraints of the greater trochanter and the shapes of the femoral head; 4) enhancing the joint space by a Hessian filter; and 5) refining the rough boundary obtained in step 3) by a moving disk technique and the filtered images obtained in step 4). The above method was implemented in a Microsoft Windows software package and the resulting software is freely available on the Internet. The feasibility of this method was tested on the data sets of 60 clinical cases (5000 CT images).  相似文献   

18.
A robust automatic clustering scheme for image segmentation usingwavelets   总被引:1,自引:0,他引:1  
The optimal features with which to discriminate between regions and, thus, segment an image often differ depending on the nature of the image. Many real images are made up of both smooth and textured regions and are best segmented using different features in different areas. A scheme that automatically selects the optimal features for each pixel using wavelet analysis is proposed, leading to a robust segmentation algorithm. An automatic method for determining the optimal number of regions for segmentation is also developed.  相似文献   

19.
The segmentation of the human airway tree from volumetric computed tomography (CT) images builds an important step for many clinical applications and for physiological studies. Previously proposed algorithms suffer from one or several problems: leaking into the surrounding lung parenchyma, the need for the user to manually adjust parameters, excessive runtime. Low-dose CT scans are increasingly utilized in lung screening studies, but segmenting them with traditional airway segmentation algorithms often yields less than satisfying results. In this paper, a new airway segmentation method based on fuzzy connectivity is presented. Small adaptive regions of interest are used that follow the airway branches as they are segmented. This has several advantages. It makes it possible to detect leaks early and avoid them, the segmentation algorithm can automatically adapt to changing image parameters, and the computing time is kept within moderate values. The new method is robust in the sense that it works on various types of scans (low-dose and regular dose, normal subjects and diseased subjects) without the need for the user to manually adjust any parameters. Comparison with a commonly used region-grow segmentation algorithm shows that the newly proposed method retrieves a significantly higher count of airway branches. A method that conducts accurate cross-sectional airway measurements on airways is presented as an additional processing step. Measurements are conducted in the original gray-level volume. Validation on a phantom shows that subvoxel accuracy is achieved for all airway sizes and airway orientations.  相似文献   

20.
A framework that combines atlas registration, fuzzy connectedness (FC) segmentation, and parametric bias field correction (PABIC) is proposed for the automatic segmentation of brain magnetic resonance imaging (MRI). First, the atlas is registered onto the MRI to initialize the following FC segmentation. Original techniques are proposed to estimate necessary initial parameters of FC segmentation. Further, the result of the FC segmentation is utilized to initialize a following PABIC algorithm. Finally, we re-apply the FC technique on the PABIC corrected MRI to get the final segmentation. Thus, we avoid expert human intervention and provide a fully automatic method for brain MRI segmentation. Experiments on both simulated and real MRI images demonstrate the validity of the method, as well as the limitation of the method. Being a fully automatic method, it is expected to find wide applications, such as three-dimensional visualization, radiation therapy planning, and medical database construction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号