首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
先通过高温热解法制备石墨型氮化碳(g-C_3N_4)颗粒,再采用化学法将所制备的g-C_3N_4颗粒进行盐酸剥离处理,制得g-C_3N_4纳米片。通过XRD、SEM、TEM、BET、UV-vis DRS、PL等手段对所制备的样品做结构表征;模拟有机污染物为罗丹明B溶液,以此来研究样品的光催化活性。结果表明:在盐酸浓度为6 mol/L、水热时间为7 h、水热温度为110℃的优化条件下,g-C_3N_4颗粒被成功剥离成g-C_3N_4纳米片,且g-C_3N_4纳米片的BET比表面积是g-C_3N_4颗粒的2.3倍。与g-C_3N_4颗粒相比,制备的g-C_3N_4纳米片具有更高的光催化活性,可见光(500 W氙灯)光照3 h对罗丹明B溶液的降解率可达92.7%。  相似文献   

2.
分别采用硫酸、盐酸和硝酸对尿素热解得到的体相块状石墨相氮化碳(g-C_3N_4)进行质子化改性,超声剥离得到氮化碳纳米片,考察3种质子化氮化碳纳米片对亚甲基蓝染料的光催化降解性能,利用XRD、FT-IR、SEM、BET、UV-DRS、UV-VIS等对其结构、形貌、比表面积、禁带宽度进行分析。结果表明,硫酸改性后的g-C_3N_4比表面积最大(60. 9 m~2·g~(-1)),亚甲基蓝降解效果最好,降解率为46. 7%,相比于体相块状g-C_3N_4的29. 2%提高了17. 5个百分点。以硫酸质子化改性的g-C_3N_4为前驱体,采用搅拌法制备得到质子化g-C_3N_4/石墨烯复合材料,其光催化降解亚甲基蓝的降解率为81. 7%,较硫酸质子化g-C_3N_4提高了35. 0个百分点。  相似文献   

3.
以双氰胺为前驱体、氯化铵为气相模板制备了具有高比表面积的g-C_3N_4纳米片,通过XRD、SEM、TEM、FTIR、BET、XPS对其形貌、晶型结构、带隙结构进行了表征,并评价了室温下g-C_3N_4纳米片对可见光降解高浓度罗丹明B水溶液的光催化活性。结果表明,氯化铵的添加对g-C_3N_4纳米片的形貌、比表面积、晶型结构、带隙结构和光催化活性影响显著,g-C_3N_4纳米片的光催化活性得到明显提高,其光催化速率常数为39.16×10~(-3 )min~(-1),为块体g-C_3N_4的2倍多。  相似文献   

4.
采用浓硫酸剥离法制备g-C_3N_4纳米片,利用化学吸附法制备BiPO_4/g-C_3N_4光催化剂。运用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见漫反射(UV-vis DRS)和X射线光电子能谱仪(XPS)对光催化剂的微观结构和界面性质进行了表征,证明了BiPO_4/g-C_3N_4光催化剂的成功制备。5%BiPO_4/g-C_3N_4光催化剂表现出最佳的光催化活性,紫外光下降解亚甲基蓝的表观速率常数是纯BiPO_4纳米棒的1.72倍,是P25的2倍。活性的提高主要归因于核壳结构的形成。  相似文献   

5.
《应用化工》2022,(6):1554-1558
由于g-C_3N_4存在着表面积小、光生载流子复合严重等问题,限制了光催化材料的光催化活性,故以g-C_3N_4/TiO_2光催化复合材料为实验对象,提出g-C_3N_4/TiO_2光催化复合材料光催化活性提升路径研究。选取适当的实验试剂与仪器,并对试剂进行一定的处理,制备g-C_3N_4纳米片、TiO_2纳米片与g-C_3N_4/TiO_2光催化复合材料,设置水分解实验步骤。在不同三聚氰胺/TiO_2质量比、高温煅烧温度与高温煅烧时间条件下,制备g-C_3N_4/TiO_2光催化复合材料,并进行水分解实验。结果表明,当制备条件为三聚氰胺/TiO_2质量比为4∶1,高温煅烧温度为550℃,高温煅烧时间为5 h时,g-C_3N_4/TiO_2光催化复合材料水分解氢气量最大,即光催化活性最佳。  相似文献   

6.
石墨相氮化碳(g-C_3N_4)由于其优异的化学稳定性和独特的电子能带结构被认为是一种廉价且极具潜力的光催化剂,然而传统方法制备的g-C_3N_4存在比表面积小、光生电子–空穴复合严重及剥离效率低等问题。采用尿素溶于一定量的水中,通过控制一定的升温速率及加热温度制备性能优异的g-C_3N_4。结果表明,在水中450~500℃裂解尿素可获得疏松多孔、类石墨相的g-C_3N_4纳米片,在500℃时获得的g-C_3N_4具有较多的纳米孔隙及较大的比表面积;550℃时孔隙消失,且g-C_3N_4的带隙能随着加热温度升高逐渐降低。光催化结果表明,随水中裂解尿素温度升高,制备的g-C_3N_4在可见光下对罗丹明B的降解率先增大后减小,500℃时降解率最高,达到75.5%,且明显好于500℃时直接加热尿素制备g-C_3N_4的降解率(24.1%)。多孔、少层且高比表面积的类石墨烯微观结构是500℃下获得多孔g-C_3N_4样品较高的光催化活性的主要原因,h+和·O_2–是参与降解反应的主要活性基团。  相似文献   

7.
李良 《工业催化》2016,24(2):51-56
为了增加比表面积和提高催化活性,一种无毒和易得的前驱体硫酸胍被首次用于制备石墨型氮化碳(g-C_3N_4)。用X射线粉末衍射、红外光谱、扫描电镜、透射电镜、N_2吸附-脱附、光电子能谱、紫外-可见光吸收光谱和荧光光谱对所得多孔g-C_3N_4进行表征。与由三聚氰胺为前驱体制备的体相g-C_3N_4相比,硫酸胍为前驱体制备的多孔g-C_3N_4具有更高的比表面积、发达的孔结构和较好的光电性能。以光催化降解苯酚为模型反应考察催化剂性能,结果表明,所得多孔g-C_3N_4的催化活性明显高于体相g-C_3N_4。优异的光催化性能和简单的合成方法使硫酸胍制备的多孔g-C_3N_4可广泛用于环境和能源领域。  相似文献   

8.
通过固相加热制备g-C_3N_4,超声调控获得片层状g-C_3N_4,光照Ag NO3与g-C_3N_4成功制备了Ag/gC_3N_4复合光催化材料。利用X射线衍射仪(XRD)以及扫描电子显微镜(SEM)分析产物的物相和形貌,采用紫外-可见吸收光谱表征样品的光学性能。以罗丹明B为模拟污染物,评价超声样品Ag/g-C_3N_4的可见光(λ≥420nm)催化性能。实验结果表明,与纯g-C_3N_4相比,超声的Ag/g-C_3N_4复合光催化材料在可见光下降解罗丹明B的光催化活性最好。分析表明Ag与g-C_3N_4的协同作用抑制光生电子-空穴的复合是可见光催化活性增强的主要原因。  相似文献   

9.
《应用化工》2022,(11):2882-2886
根据基于g-C_3N_4的不同异质结构建来改善其对永久性有机污染物的光催化降解性能,其中,石墨碳氮化物(g-C_3N_4)由于其高度的化学稳定性、低成本和合适的电子结构以及较弱的能隙(~2.7 eV)一直以来是科研工作者们关注的热点之一,总结归纳了基于g-C_3N_4的不同的光催化剂,如二元杂化纳米复合材料、复合杂化纳米复合材料。并简要讨论了基于g-C_3N_4的光催化的基本原理,最后总结了基于g-C_3N_4的光催化剂系统在水净化方面未来的观点。到目前为止,需要设计和合成一种在可见光驱动下具有意想不到性能的g-C_3N_4基光催化系统用于废水处理。  相似文献   

10.
本论文提出通过原位一步水热法,以g-C_3N_4纳米片为模板,Mg(NO_3)_2和Al(NO_3)_3为前驱体制备得到g-C_3N_4/Mg Al-LDH复合异质结材料,并对其光催化分解水产氢性能进行评价。结果显示,异质结的构建为光生载流子的迁移和分离提供更多的高速通道。因此复合异质结样品在光催化产氢反应中表现出优异性能。其中CN/MgAl1.0复合样品表现出最佳的产氢活性,产氢速率达513.2μmol·g~(-1)·h~(-1),是单纯g-C_3N_4样品的8.8倍。  相似文献   

11.
采用热处理法合成了g-C_3N_4,通过光照沉积法将MoS_2原位沉积到g-C_3N_4表面的活性位点,制备了MoS_2/g-C_3N_4复合光催化剂,采用XRD、XPS和BET对MoS_2/g-C_3N_4复合光催化剂的结构进行了表征:MoS_2负载到g-C_3N_4表面,且未改变g-C_3N_4的晶体结构,同时具有较大的比表面积。考察了MoS_2负载量、光催化剂的用量及光源强度对光催化降解H_2S性能的影响,当氙灯的功率为300W、光催化剂的用量为20 mg以及MoS_2的负载量为3%时,MoS_2/g-C_3N_4光催化降解H_2S制取H_2的活性最高,产氢速率最高可达到3 205μmol/(h·g),是纯g-C_3N_4光催化反应产氢速率的3.1倍,且表现出较好的光催化稳定性。  相似文献   

12.
采用高温煅烧法成功制备了块状g-C_3N_4和g-C_3N_4纳米材料,利用XRD、SEM、FT-IR、UV-Vis、PL等方法对材料进行表征,并研究其降解头孢曲松钠的光催化活性和机理。当降解时间为120 min、头孢曲松钠质量浓度为10 mg/mL、半导体材料的加入量为0.1 g时,块状g-C_3N_4和g-C_3N_4纳米材料的降解率分别为67.74%和85.84%,g-C_3N_4纳米材料的光催化活性高于块状g-C_3N_4;对催化机制研究发现,空穴(h+)和羟基自由基(·OH)起主要催化作用,超氧自由基(·O_2~-)次之。对g-C_3N_4纳米材料的稳定性进行评价,3次循环催化后材料稳定性良好。  相似文献   

13.
采用光沉积法分别将Ag和MnOx有选择地负载到WO_3/g-C_3N_4复合光催化剂的g-C_3N_4和WO_3表面,制备出双助剂共同改性的Ag-MnOx/WO_3/g-C_3N_4复合光催化剂,通过XRD、TEM、FT-IR、DRS对样品进行表征,考察了Ag-MnOx/WO_3/g-C_3N_4在光催化降解罗丹明B(RhB)溶液的光催化活性。结果表明,Ag沉积在g-C_3N_4表面,MnOx沉积在WO_3表面,有效地促进了光生电子和空穴的分离,在光催化降解测试中,Ag-MnOx/WO_3/g-C_3N_4的降解速率是WO_3/g-C_3N_4的1. 87倍,且比负载单助剂的WO_3/g-C_3N_4NS和浸渍法制备的复合光催化剂降解速率更高。  相似文献   

14.
为了提高石墨型氮化碳(g-C_3N_4)的光催化性能,通过水热还原法制备了g-C_3N_4/C/Ag纳米复合材料,并用扫描电子显微镜(SEM),X射线衍射仪(XRD)和高分辨率傅立叶变换红外(FTIR)光谱表征了产品的微观形貌和化学组成。产品的紫外可见光吸收光谱分析表明,加入的纳米银可以提高复合材料的光吸收范围和可见光的吸收强度。用制备得到的四种样品进行了亚甲基蓝的降解实验,发现当反应条件为180℃,反应时间为6 h时,得到的g-C_3N_4/C/Ag纳米复合材料的光催化降解性能最好。表明成功制备出了g-C_3N_4/C/Ag纳米复合材料,其光催化性能比g-C_3N_4更强。  相似文献   

15.
作为一种可见光响应的半导体聚合物光催化剂,石墨相氮化碳(g-C_3N_4)在抑制环境污染和解决能源短缺方面具有广阔的应用前景。然而,传统方法合成的g-C_3N_4光催化剂比表面积小、禁带宽度大、光生电子-空穴易于复合,抑制了其光催化活性,需要对其进行改性来提高光催化能力。在介绍g-C_3N_4的制备方法的基础上,综述了g-C_3N_4在元素掺杂、构建有效晶面复合的异质结或纳米复合物及构建等离子体等光催化剂改性方面的研究进展。  相似文献   

16.
以一步法原位合成了g-C_3N_4/ZnO异质结复合材料,评价其在可见光下降解亚甲基蓝(MB)的光催化活性,并探讨了g-C_3N_4/ZnO的光催化机制。运用XRD、FTIR、SEM和UV-Vis DRS对所合成的复合材料进行表征。结果表明,经复合后g-C_3N_4和ZnO紧密结合,构建了异质结,提高了光生电子空穴的分离效率,并且在可见光区表现出较强的光响应性;当g-C_3N_4的质量分数为19%时,复合材料g-C_3N_4/ZnO降解MB的反应速率常数为0.020 6 min-1,是纯g-C_3N_4的3.8倍。催化剂重复使用5次,仍保持较高的光催化活性。  相似文献   

17.
制备了核壳异质结催化剂SmVO_4@g-C_3N_4和负载型异质结催化剂SmVO_4/g-C_3N_4,利用XRD、SEM-EDX、TEM、XPS及N2吸附等手段对其进行了表征,并考察其在可见光下对罗丹明B溶液的光催化活性。结果表明,核壳结构SmVO_4@gC_3N_4光催化活性明显高于SmVO_4和g-C_3N_4。但在几种催化剂中,负载量为8. 0%的Sm VO_4/g-C_3N_4样品的光催化活性最好。  相似文献   

18.
文章中,采用两步法合成了g-C_3N_4-SnO_2复合物。首先,通过热缩聚三聚氰胺来合成g-C_3N_4,再利用水热法合成不同质量比的g-C_3N_4-SnO_2复合光催化剂。利用X射线衍射(XRD),红外光谱(FT-IR),场发射扫描电子显微镜(FE-SEM)和紫外可见漫反射(UV-Vis-DRS)等手段对复合光催化剂进行表征。通过在可见光下检测降解亚甲基蓝(MB)水溶液来评估复合光催化剂的光催化活性。结果表明:复合光催化剂由SnO_2和g-C_3N_4组成,其在可见光区的吸收比纯SnO_2和g-C_3N_4有所提高。随着g-C_3N_4在复合物中含量的增多,光催化活性先增加后降低。其中g-C_3N_4含量为71.5%的复合物光催化活性最佳。其对MB的降解可达到34.4%。分别是纯g-C_3N_4和SnO_2的7.0和10.4倍。并且,通过对目标污染物亚甲基蓝的考察,研究了其光催化作用的机理。  相似文献   

19.
设计机械强度高、电化学性能好和绝缘性优良的锂电池隔膜具有重要意义。采用热缩聚法将类石墨相氮化碳(g-C_3N_4)与聚偏氟乙烯(PVDF)混纺制备了PVDF/g-C_3N_4复合纤维隔膜,通过扫描电子显微镜、万能拉伸试验仪、热重分析仪、电化学工作站、电池测试系统对PVDF/g-C_3N_4复合纤维隔膜的微观形貌和性能进行测试与表征。考察了g-C_3N_4纳米片添加量对复合纤维隔膜的形貌、热稳定性、力学性能以及电化学性能等的影响。研究表明,当g-C_3N_4纳米片添加量为PVDF质量的5%时,纤维直径最小,力学性能最好且孔隙率最大为74.08%;提高其含量至15%时,吸液率达到最大为443.48%;当g-C_3N_4纳米片添加量为PVDF质量的10%时,复合纤维隔膜的离子电导率及电化学稳定窗口分别达到了1.15×10~(–3) S/cm和5.1 V。与商用隔膜相比,PVDF/g-C_3N_4复合纤维隔膜表现出良好的电化学性能。  相似文献   

20.
《化学工程》2017,(4):18-24
利用原位生成法,制备了Bi_2S_3含量可调的Bi_2S_3/g-C_3N_4复合材料。通过X-射线衍射(XRD)、透射电镜(TEM)、光致发光光谱(PL)、时间分辨荧光衰减光谱等手段对制备的光催化剂物相、形貌、结构和性能进行表征分析。可见光照射下,以罗丹明B(Rh B)为降解模型评价Bi_2S_3/g-C_3N_4复合材料的催化性能。结果表明:Bi_2S_3沉积在g-C_3N_4表面,显著增强g-C_3N_4的可见光催化性能,并随着Bi_2S_3含量不同,复合光催化剂Bi_2S_3/g-C_3N_4的催化性能发生变化,其中Bi_2S_3质量分数为5%时表现出最佳的可见光催化活性。利用捕获剂、NBT转化确定h+是主要的活性物种,O_2~-·是次要活性物种。对Bi_2S_3/g-C_3N_4光催化活性增强机理进行研究,Bi_2S_3的加入显著增强g-C_3N_4对可见光的吸收,并与g-C_3N_4之间形成异质结,促进光生电子空穴的有效分离,延长载流子寿命,显著增强g-C_3N_4光催化性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号