共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
锂离子电池多孔硅/碳复合负极材料的研究 总被引:1,自引:0,他引:1
以商业化多晶硅粉为原料, 采用金属银催化剂诱导化学腐蚀的方法制得三维多孔硅材料。通过优化腐蚀条件, 得到孔径约为130 nm, 比表面为4.85 m2/g的多孔硅材料。将多孔硅和PAN溶液混合球磨并经高温烧结后在多孔硅表面包覆上一层致密的无定形碳膜, 从而制得多孔硅/碳复合材料作为锂离子电池的负极材料。3D多孔硅结构可以缓解电化学嵌/脱锂过程中材料的体积效应, 无定形碳膜层可有效改善复合材料的导电性能。电化学性能测试表明, 该多孔硅/碳复合负极材料电池在0.4 A/g的恒电流下, 首次放电容量3345 mAh/g, 首次循环库伦效率85.8%, 循环55次后容量仍保持有1645 mAh/g。并且在4 A/g的倍率下, 容量仍维持有1174 mAh/g。该方法原料成本低廉, 可规模化生产。 相似文献
3.
4.
硅基负极材料因具有较高的理论储锂容量,将替代传统的石墨负极材料成为下一代锂离子电池最有前景的负极材料之一。然而,硅作为负极材料体积膨胀率(可达到300%)大、导电率低、易被电解液分解产生的HF腐蚀,这些缺点限制了其在商业应用中的发展。碳具有稳定性高、导电性好、价格低、来源广等优点,但其理论储锂容量较低,仅约为硅的1/10。为解决锂离子电池硅材料存在的问题,目前主要采用将硅与碳进行复合的办法,制备出储电量高、导电性好、循环性能优异的硅-碳复合负极材料。重点从硅碳复合结构和制备方法两个方面阐述了硅-碳复合负极材料的研究进展,认为"鸡蛋"结构能够有效地提高循环性能和安全性能,但是目前仍然不能够规模化生产。最后提出研究发展思路,应用胶体颗粒共凝胶法设计制备了一种特殊的硅-碳复合核壳结构。 相似文献
5.
将锂离子电池材料尺寸减小到纳米尺度,可减小充放电过程中Li+迁移距离及电极材料的相对膨胀率,是一种有效提升锂离子电池性能的手段。但是,纳米化也会带来导电率低、表面副反应活性高、团聚倾向大等明显缺点。在负极活性材料中引入导电复合相,可以有效提升材料体系的导电性、储锂容量、倍率特性和循环稳定性,是解决现有技术难题的有效突破口之一。对近年锂离子电池负极材料研究方面的主要成果进行了综述,着重关注几种热点负极材料及其新型微结构的设计、实现与性能优化研究。以可控制备工艺为主线,总结了相关的研究成果。 相似文献
6.
7.
8.
锂离子电池硅基负极材料研究进展 总被引:1,自引:0,他引:1
硅基负极材料具有比容量大的优点,是高容量锂离子电池理想的负极材料。然而硅基材料在循环过程中容量衰减快,影响了其实用性。从硅复合物粉末和硅薄膜两个重要研究方面对硅基负极材料进行了综述,指出在Si基复合负极材料的研究中,单一途径改性提升循环性能的幅度有限,很难达到实用化阶段。硅的纳米化、无定形化、合金化及复合化等方法的综合运用成为硅基材料研究的主导方向。 相似文献
9.
10.
11.
自从1958年美国加州大学的一位研究生提出了锂、钠等活泼金属做电池负极的设想后,锂离子电池的研究开始引人注目。然而,锂离子电池的实用化研究却经历了很长的时间。直到1990年,日本索尼(Sony)公司成功地采用碳材料作负极、氧化钻锂作正极、高氯酸锂-碳酸乙酯+碳酸二乙酯(LiClO4-EC+DEC)作电解质,研制出新一代实用化的新型锂离子二次电池——液态锂离子电池(LIB)。从此,锂离子电池便以其比能量高、电池电压高、工作温度 相似文献
12.
硅基材料理论容量高、电位低、自然资源丰富,是最理想的锂离子电池负极材料。但是硅基负极在锂化和脱锂过程中巨大的体积变化,导致了硅基负极的循环稳定性与导电性差,阻碍了其实际应用。硅碳复合材料可将碳材料的高导电性和机械性能与硅基材料的高容量和低电位的优势相结合。综述了硅碳负极材料的主要制备方法,总结了硅碳复合材料的结构设计,并对未来碳硅材料的研究工作进行了展望。 相似文献
13.
硅负极材料具有很高的理论比容量(4200mAh/g),但充放电过程中巨大的体积变化导致其循环性能很差,同时较低的电导率以及与常规电解液的不相容性等因素限制了硅作为负极材料在锂离子电池中的应用。因此,目前大部分研究人员都致力于解决其循环性能差的问题。综述了近年来改善硅基负极材料性能的最新进展,指出了硅基材料作为锂离子电池负极材料的研究前景。 相似文献
14.
碳负极材料是迄今为止综合性能最好的锂离子电池负极材料。通过对碳材料微观结构的设计,能够显著改善锂离子电池的能量密度、功率密度和循环寿命,适应新能源汽车对动力电池的要求。与传统石墨负极材料相比,硬碳具有嵌锂容量高、倍率性能好以及循环寿命长等优点。研究者通过改变碳源、优化制备工艺,相继制备了一系列结构独特性能优异的硬碳材料。基于硬碳基锂离子电池负极材料的最新研究进展,总结了以不同碳源制备硬碳材料的研究工作,并简要分析了硬碳的微观结构对材料嵌锂性能的影响。最后总结并指出了该领域亟待解决的问题以及未来的发展方向。 相似文献
15.
具有高理论比容量和低操作电压的锡及其氧化物负极材料,在当前对锂离子电池高能量密度和高功率密度的日益迫切的需求下备受关注。但其在充放电过程中的巨大体积效应导致其循环性能较差,严重阻碍了锡基负极材料的实用化。在改善循环性能的诸多方法中,结合纳米化和微观结构设计来制备纳米结构Sn/C复合负极材料是一种较好的改性思路。按照锡与碳的复合形式,可将其分为表面附着型、核壳包覆型、弥散包覆型等基本构型和其他复杂结构。本文按此分类方法,从制备工艺、微观结构、电化学性能等方面对各种Sn/C复合负极材料的研究进展进行了评述,并提出将各种基本构型相结合来制备具有多级复合纳米结构的Sn/C复合材料,同时简化制备工艺,对于其性能的进一步提升和实用化将具有重要的意义。 相似文献
17.
18.
19.
20.
《中国材料进展》2016,(7)
硅由于具有超石墨10倍的高理论容量和相对适中的放电平台而备受关注,是最具潜力的下一代锂离子电池负极材料之一。然而,硅的本征电导率低,且在嵌锂的过程中有着巨大的体积变化(300%),会导致材料粉化,电极崩塌,失去电接触。此外,在电解液中硅表面的SEI膜重复形成也导致了极化增大,库伦效率降低和电解液消耗等问题。为了解决上述问题,实现硅电极的商业化应用,改善硅基电极的途径主要有:制备新型硅基材料抑制体积效应和提高电导率,改进粘结剂来加强电极结构防止电极崩塌,改进电解液以提高SEI膜质量和库伦效率。当前,改进硅基负极材料性能的主要策略是纳米化、孔隙化和复合化。粘结剂的改性也可分为开发新型粘结剂和修饰已有粘结剂。主要从硅基材料和粘结剂两方面论述了近年来的发展状况,并展望了其未来的发展方向。 相似文献