首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
采用零价铁(ZVI)活化Na_2S_2O_8-NaClO体系处理垃圾渗滤液生化尾水,考察了pH、催化剂nZVI投加量、氧化剂Na_2S_2O_8投加量、氧化剂NaClO投加量等因素对氧化效果的影响,并利用傅里叶光谱、三维荧光光谱分析技术对水样前后进行分析。结果表明,nZVI活化Na_2S_2O_8-NaClO体系能够有效的去除垃圾渗滤液生化尾水中目标污染物,当催化剂nZVI投加量为0.6g/L、Na_2S_2O_8投加量为2.5g/L、NaClO投加量为30mL/L(有效氯的质量分数10%)、水样初始pH为6时,COD和NH_4~+-N的去除率分别为85%和90%。垃圾渗滤液生化尾水经过nZVI活化Na_2S_2O_8-NaClO体系处理后污染程度显著降低,大量腐殖酸类物质被自由基降解。  相似文献   

2.
采用Fe_3O_4/Na_2S_2O_8体系催化氧化处理垃圾渗滤液生化尾水,研究了Na_2S_2O_8与Fe_3O_4投加量、pH、反应时间等因素对处理效果的影响。结果表明,在pH=3,m(S_2O_8~(2-))∶12m(COD)=1.2,Fe_3O_4投加量为1.5 g/L,反应时间为24 h的条件下,COD与色度去除率分别为63%和100%。FTIR分析结果表明,Fe_3O_4/Na_2S_2O_8体系的小分子有机物含量比未处理水样小分子有机物含量有所降低。  相似文献   

3.
以FeSO_4为活化剂,采用Na_2S_2O_8/H_2O_2耦合高级氧化体系处理垃圾渗滤液生化尾水。借助响应面法BoxBehnken设计分析Fe SO_4·7H_2O、Na_2S_2O_8、H_2O_2投加量等因素对COD_(Cr)去除率的影响。研究结果显示:Fe~(2+)对COD_(Cr)去除效果影响显著,Na_2S_2O_8与H_2O_2两者之间有显著的交互影响,Na_2S_2O_8/H_2O_2体系产生协同效应,有效提高了COD_(Cr)去除率。在Fe SO_4·7H_2O投加量为2 g/L,Na_2S_2O_8投加量为1.75 g/L,H_2O_2投加量为3 m L/L的条件下,渗滤液尾水COD_(Cr)去除率达到70%以上。  相似文献   

4.
采用亚铁活化过硫酸盐氧化渗滤液尾水,利用单因素变量法研究了亚铁活化过硫酸盐氧化渗滤液尾水的工艺参数。结果表明,适宜的工艺参数:n(Fe~(2+))/n(S_2O_8~(2-))为0.25,废水初始p H=4,过硫酸钠投加量为4.0 g/L,反应时间为12 h。在上述工艺条件下,渗滤液尾水的COD去除率和色度去除率可分别达到60%和95%。该项研究可为渗滤液尾水的处理提供一种技术选择。  相似文献   

5.
液相氧化脱硝技术被认为是最有前景的脱硝技术之一。在小型鼓泡反应器中,进行了Na_2S_2O_8溶液脱硝试验。热力学计算表明:无论酸性或碱性条件下,300~380 K时,脱硝反应均为放热反应,且反应的△G均远小于-40 k J·mol~(-1),反应平衡系数均非常大;同一温度时,碱性条件下反应平衡系数较酸性条件下大。选取吸收时间、Na_2S_2O_8浓度、初始p H值、反应温度、烟气流量和NO含量为过程参数,脱硝率为响应,进行了单因素试验。结果表明:脱硝率随Na_2S_2O_8浓度、温度的增加而升高,随吸收时间、烟气流量或NO含量的增加而降低,p H值在2~3和9~12,体系获得较好的脱硝效果。Na_2S_2O_8摩尔浓度为0.15 mol/L,初始p H值为10,温度为70℃,烟气流量为0.5 L/min的条件下,处理NO体积分数为0.03%~0.08%的烟气,20 min内体系脱硝率均在80%以上。  相似文献   

6.
采用Fe~(2+)活化Na_2S_2O_8技术处理实际焦油蒸馏废水。首先通过正交试验考察了Na_2S_2O_8初始浓度、Fe~(2+)初始浓度、pH以及温度等条件对稀释后焦油蒸馏废水COD去除率的影响规律,然后通过单因素实验确定了其最佳反应条件。实验结果表明,当p H为7.00,Na_2S_2O_8初始浓度为20mmol/L,Fe~(2+)初始浓度为20 mmol/L条件下,在30℃降解反应120 min,其化学需氧量(COD)去除率为53.5%,总有机碳(TOC)去除率为62.2%,降解过程遵循指数衰减规律,为焦油蒸馏废水的预处理技术提供了一条新的途径。  相似文献   

7.
王海博 《精细化工》2020,37(5):1032-1037
以FeSO_4·7H_2O和Na_2Mo O_4·2H_2O为原料,采用水热法合成了棒状FeMoO_4,通过XRD、Raman光谱、SEM对其结构和形貌进行了表征,研究了其对Na_2S_2O_8的活化性能。以苯酚为目标污染物,考察了Na_2S_2O_8浓度、苯酚溶液初始质量浓度、溶液初始pH和反应温度对苯酚降解率的影响,初步探究了体系中起主要作用的自由基种类。结果表明,pH在2.00~11.00内,FeMoO_4活化的Na_2S_2O_8对苯酚表现出良好的降解性能,铁离子最大溶出量为1.663 mg/L。最佳降解条件为:溶液初始pH 3.00,反应温度30℃,FeMoO_4质量浓度0.4 g/L,n(Na_2S_2O_8)∶n(苯酚)=25∶1,6 h内苯酚降解率达97.20%;非均相FeMoO_4活化Na_2S_2O_8体系降解苯酚符合一级反应动力学,反应活化能为53.49 kJ/mol;自由基淬灭实验结果表明,SO_4~–·是降解苯酚的主要氧化剂。  相似文献   

8.
采用O_3/Na_2S_2O_8耦合体系预处理制药废水,研究了O_3通气量、Na_2S_2O_8投加量、pH、反应时间等因素对COD和色度去除率的影响。结果表明,COD和色度的去除率随着Na_2S_2O_8投加量、O_3通气量、反应时间的增加而增大,在碱性条件下更有利于废水中污染物的去除。在O_3通气量为1.2 g/(h·L)、Na_2S_2O_8投加质量浓度为8 g/L、pH=8.6、反应时间为150 min的条件下,制药废水的COD、色度的去除率分别达到68.3%、97%,B/C由0.12提高到0.38。  相似文献   

9.
《江西化工》2021,37(5)
采用Fe(Ⅱ)活化Na2S2O8-Na Cl O体系处理垃圾渗滤液生化尾水,考察了p H值、Fe(Ⅱ)投加量、Na2S2O8投加量、Na Cl O投加量等因素对氧化效果的影响。试验结果表明:p H=6,Fe(Ⅱ)投加量为0. 3 g/L,氧化剂Na2S2O8投加量为2. 5 g/L时,Na Cl O投加量为40 m L/L(有效氯为 10%)此时82%与91%。利用GC-MS分析氧化前水样后得出:经过Na2S2O8-Na Cl O体系处理后出水的污染程度明显下降,有机物种类大量减少。  相似文献   

10.
以柠檬酸单独络合铜离子、柠檬酸单独络合镍离子、柠檬酸综合络合铜镍离子这3种模拟电镀废水为对象,采用芬顿(Fenton)、高锰酸钾(KMnO_4)以及过硫酸钠(Na_2S_2O_8)三种氧化法进行氧化破络,并结合加碱沉淀工艺对铜镍离子进行去除。结果表明,Fenton氧化法最佳反应参数:初始pH值为3.0,Fe~(2+):H_2O_2摩尔比为1:10,30%H_2O_2投加量为0.05 mL/L,反应时间为30 min。KMnO_4氧化法最佳反应参数:初始pH值为3.0~4.0,KMnO_4投加量为37.5 mg/L,反应时间为80 min。Na_2S_2O_8氧化法最佳反应参数:温度为20℃,初始pH值为2~7,S_2O_8~(2-):Fe~(2+)摩尔比为1:1,Na_2S_2O_8投加量为0.1 g/L,反应时间为90 min。对比三种氧化法,可以得出,对pH的适应性:Na_2S_2O_8氧化法KMnO_4氧化法Fenton氧化法;氧化效率:Fenton氧化法KMnO_4氧化法Na_2S_2O_8氧化法;经济效率:KMnO_4氧化法Na_2S_2O_8氧化法Fenton氧化法。因此,对于不同的废水,根据其特点选择合适的处理方法是十分必要的。  相似文献   

11.
研究了UV/K_2S_2O_8体系对水中四环素的降解效果。首先对比了该反应体系与UV氧化、单独K_2S_2O_8氧化对四环素的处理效果,结果表明UV能有效活化分解K_2S_2O_8,能有效去除水中的四环素。同时探讨了四环素初始浓度、K_2S_2O_8投量、反应时间、溶液初始pH对降解效果的影响,结果表明,在最佳条件下四环素的降解率达100%。同时实验结果表明,UV/K_2S_2O_8体系对四环素的降解过程符合一级动力学规律。最后探讨了UV/K_2S_2O_8技术降解四环素的机理。  相似文献   

12.
为了考察Fe2+/Na_2S_2_O8/H_2O_2氧化体系对实际印染废水的处理效果,首先试验确定Fe2+/H_2O_2和Fe2+/Na_2S_2O_8氧化体系的最佳药剂投加量以及Fe2+/Na2S2O8/H2O2氧化体系的最佳p H,基于最佳p H条件下以药剂投加量为自变量,废水COD去除率为响应值,通过Box-Behnken设计方法设计试验,利用响应曲面分析优化,以优化结果为基础,改变氧化体系中药剂的投加时间与顺序,得出Fe2+/Na2S2O8/H_2O_2氧化体系最优工艺参数,经过90 min反应后,出水COD达到纺织染整行业废水排放限值。  相似文献   

13.
采用微波诱导活性炭负载铁铜(Fe_3O_4-CuO-AC)催化H_2O_2、Na_2S_2O_8处理二乙基次膦酸铝(AlPi)废水,探究了两种体系下pH、催化剂投加量、氧化剂投加量、温度等因素对废水中总磷去除率的影响,对比了双氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8+H_2O_2)与两种单一氧化体系(MW/Fe_3O_4-CuO-AC/Na_2S_2O_8、MW/Fe_3O_4-CuO-AC/H_2O_2)对AlPi的氧化效果。结果表明,双氧化体系对AlPi模拟废水和工业废水中总磷的去除率可分别达到85.47%、71.43%,显著高于单一氧化体系。  相似文献   

14.
K_2S_2O_8/Na_2S_2O_3引发剑麻纤维接枝的研究   总被引:2,自引:0,他引:2  
采用K_2S_2O_8/Na_2S_2O_3氧化还原体系作为剑麻纤维接枝的引发剂,能够降低反应的温度,提高纤维素的接枝率和单体的转化率。文章讨论了过硫酸钾、硫代硫酸钠和反应温度对剑麻纤维接枝的影响。  相似文献   

15.
采用固体催化剂激活过硫酸盐深度处理焦化尾水,研究了不同活化剂的活化性能,对比不同COD:ρ(Na_2S_2O_8)下COD的降解曲线,并进行化学反应动力学分析;通过气相色谱-质谱联用仪,分析焦化尾水中的难生物降解有机质的降解途径。结果表明,零价铁为最佳活化剂。降解过程优化的COD:ρ(Na_2S_2O_8)为1:6,此时COD降解率达到73%;色度降低至17倍,并对氰化物和硫氰化物具有优先攻击的选择性。硫酸根自由基(SO4·-)可破坏焦化尾水的生色团,有机物发生较大变化,苯酚被氧化为间甲酚、甲基苯酚等,喹啉、吲哚及其衍生物可被开环降解,但结构更加稳定的咔唑难以被氧化,反应产物具有絮凝作用,可进一步提高氧化反应出水水质。  相似文献   

16.
为研究活性Cl O_2降解Na_2S_2O_3,考察了Cl O_2与Na_2S_2O_3摩尔比、反应温度对降解效果的影响,建立了动力学方程,得到了动力学参数。实验结果表明:Cl O2降解Na_2S_2O_3时,反应摩尔比是0.64∶1,反应温度对降解有明显影响;降解反应对Cl O_2和Na_2S_2O_3均为1/2级,总级数为一级;反应速率常数k=5.70×10~(11)exp(9935.1/T),活化能Ea=82.60 k J/mol。  相似文献   

17.
采用磁性活性炭(Cu Fe2O4/AC,MACC)活化S_2O_8~(2-)深度处理焦化废水生化出水,考察了m(Cu Fe2O4)∶m(AC)、MACC投加量、K_2S_2O_8初始质量浓度以及溶液pH对焦化废水生化出水中TOC和色度去除效果的影响,并采用响应面法中的CCD实验设计对反应条件进行优化。结果表明:最佳反应条件为1.5-MACC投加量为5 g/L,K_2S_2O_8初始质量浓度为6 g/L和初始pH为8.3,在此条件下反应360 min后,TOC、色度去除率分别为85.4%、95.2%。响应面分析结果表明,最佳条件下的TOC去除率与模型预测值接近。  相似文献   

18.
S_4O_6~(2-)是S_2O_3~(2-)氧化过程重要的中间产物。在p H值9.5~11.0范围内,用毛细管电泳方法对S_4O_6~(2-)的H_2O_2氧化反应进行了动力学研究。在反应溶液中检测到的产物包括S_2O_3~(2-)、S_2O_6~(2-)和S_3O_6~(2-)。在动力学研究中发现,氧化剂H_2O_2的浓度对S_4O_6~(2-)的降解速率影响不大,这可能是由于H_2O_2-S_4O_6~(2-)氧化体系中,优先发生的反应不是S_4O_6~(2-)的氧化,而是它的碱性分解反应,H_2O_2只对S_4O_6~(2-)的降解产物进行氧化。在考察p H值范围内,S_4O_6~(2-)的氧化降解速率受pH值影响较大,但速率常数与S_4O_6~(2-)碱性分解反应速率十分接近。提出了13步反应机理,通过数值拟合计算得到的动力学曲线与实验曲线较好地吻合。  相似文献   

19.
采用共沉淀法制备了铁酸钴,通过XRD和SEM表征铁酸钴的性能。利用实验制备的铁酸钴催化Na_2S_2O_8对孔雀石绿进行降解。研究了催化剂和过硫酸钠用量、催化剂的煅烧温度、孔雀石绿浓度、pH值、反应时间和不同无机离子对降解孔雀石绿的影响。实验结果表明:在Na_2S_2O_8浓度为5 g/L、催化剂用量为0. 5 g、煅烧温度500℃、孔雀石绿浓度为10 mg/L、pH值为3的条件下,反应30 min孔雀石绿的脱色率高达96. 2%。且不同的无机离子对孔雀石绿的降解有一定的抑制作用。  相似文献   

20.
研究了O_3-H_2O_2体系降解膜滤垃圾浓缩液中有机物的效果与特点。结果表明,在反应时间为30 min,臭氧投加质量流量为4 g/h时,添加4 m L/L的H2O2可取得理想的处理效果,BOD_5/COD由0.025提升至0.527,对色度、腐殖酸、COD的去除率分别为86.99%、62.94%、53.03%,较之O_3体系的去除率分别提高了23.05%、18.91%、19.55%,原因是适量的H_2O_2有强化反应体系中自由基的作用。O_3-H_2O_2体系能将腐殖酸等大分子有机物分解为小分子烷烃类等臭氧惰性产物,随反应时间的延长以及H2O2的影响,p H有下降的趋势,且有机物的降解逐渐矿化为CO_3~(2-),由此导致了反应后期臭氧的利用率下降以及有机物的去除速率有所降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号