首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用熔融共混法制备了尼龙6/苯乙烯-马来酸酐共聚物/N-苯基马来酰亚胺共混物(PA6/SMA/N-PMI),并利用DSC、TGA及力学性能测试等手段研究了SMA用量对PA6/SMA/N-PMI共混物熔融结晶行为、热学性能以及力学性能的影响。结果表明,共混物的最大分解温度较纯PA6有较大提高;SMA用量的增加,共混物的结晶温度、结晶度以及熔融焓均先降低再升高;当SMA用量为5份时,共混物的弯曲强度、弯曲模量以及热变形温度均达到最大值,分别为113.8、3 053 MPa及61.3℃,较纯PA6分别提高了25.1%、28.0%及19.0%;拉伸强度在SMA用量为7.5份时达到最大值81.4 MPa,较纯PA6提高了17.1%。  相似文献   

2.
采用熔融共挤制备了尼龙6(PA6)/苯乙烯-马来酸酐共聚物(SMA)共混物,利用差示扫描量热法、热重分析、热变形温度测试及力学测试等手段研究了SMA含量对PA6/SMA共混物熔融结晶行为、热性能及力学性能的影响。结果表明,SMA的加入使共混物的熔融温度、结晶温度及结晶度降低;当SMA用量为5份时,共混物最大分解温度较纯PA6提高了33.5℃;共混物的弯曲强度和弯曲模量在SMA用量为2.5份时达到最大,分别为115.0、3 227 MPa,比纯PA6提高了26.4%、37.0%,拉伸强度在SMA用量为5份时达到最大87.5 MPa,比纯PA6提高了25.9%。  相似文献   

3.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/N-苯基马来酰亚胺复合材料(PA6/SMA/N-PMI),利用差示扫描量热法(DSC)、热重分析(TGA)及力学性能测试等手段研究了N-PMI用量对PA6/SMA/N-PMI复合材料熔融结晶行为、热性能以及力学性能的影响。结果表明:复合材料的最大分解温度较纯PA6有所提高;随着N-PMI用量的增加,复合材料的结晶温度、结晶度以及熔融焓均逐渐降低;当N-PMI用量为15份时,复合材料的弯曲强度、弯曲模量、拉伸强度以及热变形温度均达到最大值,分别为101.0、2 892、71.6 MPa以及56.6℃,较纯PA6分别提高了11.0%、21.3%、3.1%和10.0%。  相似文献   

4.
采用自制耐热改性剂N-苯基马来酰亚胺-马来酸酐二元共聚物(NMA)与纳米有机蒙脱土(nanoOMMT)复配对聚酰胺(PA)6进行共混改性,研究了不同m(NMA)∶m(nano-OMMT)对PA 6熔融结晶行为、热性能及力学性能的影响。结果表明:nano-OMMT剥离分散在PA 6基体中;随着nano-OMMT含量增加,PA 6/NMA/nano-OMMT复合材料的熔融温度、结晶温度、结晶度及熔融焓均先升后降;m(NMA)∶m(nano-OMMT)为8∶2时,复合材料弯曲强度、弯曲模量、拉伸强度和负荷变形温度均达最大,分别为117.1,3 301,80.5 MPa及82.7℃,较不加nano-OMMT分别提高21.2%,25.0%,12.9%,27.8%。  相似文献   

5.
N-苯基马来酰亚胺与马来酸酐的共聚物(NMA)对尼龙(PA)6具有良好的耐热改性作用,纳米Si O2能够较好地改善PA6的力学性能。采用自制的NMA与纳米Si O2以不同质量配比复配,对PA6进行共混改性,利用差示扫描量热法、热重分析、热变形温度和力学性能等表征方法研究了不同复配比例对PA6热性能及力学性能的影响。结果表明,随着纳米Si O2含量增加,PA6/NMA/纳米Si O2复合材料的熔融温度、结晶温度、结晶度及熔融焓均呈现先上升后下降的趋势;当NMA与纳米Si O2的质量比为10∶0时,复合材料的热稳定性最好;当NMA与纳米Si O2的质量比为8∶2时,复合材料的弯曲强度、弯曲弹性模量、拉伸强度和热变形温度均达到最大值,分别为108.3,2 989,77.6 MPa以及68.4℃,较纯PA6分别提高了19.0%,25.3%,11.7%和19.2%。随着纳米Si O2含量的增加,复合材料的熔体流动速率呈现先增加后减小的趋势。  相似文献   

6.
采用熔融共混法制备了聚酰胺6/苯乙烯-马来酸酐共聚物/长玻璃纤维(PA6/SMA/LGF)复合材料,利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度及力学性能测试等手段研究了LGF含量对PA6/SMA/LGF复合材料熔融结晶行为、热性能及力学性能的影响。结果表明:随着LGF含量的增加,PA6/SMA/LGF复合材料的结晶温度、结晶度以及熔融焓均先升高再降低,而且复合材料的最大分解温度较纯PA6显著提高;另外,随着LGF含量的增加,PA6/SMA/LGF复合材料的热性能及力学性能均明显改善,其中当LGF含量为27%时,复合材料的热变形温度、弯曲强度、弯曲模量、拉伸强度和冲击强度分别增至206.0℃、227.8 MPa、7 335 MPa、180.6 MPa和18.7 kJ/m2。  相似文献   

7.
采用熔融共混法制备PA6/NMA/EP共混物;利用差示扫描量热法(DSC)、热重分析(TGA)、热变形温度测试仪、微机控制电子万能试验机等对其性能进行测试,并研究了EP与PA6的质量比对PA6/NMA/EP共混物的结晶行为、热性能及力学性能的影响。结果表明:随着EP与PA6的质量比的增加,PA6/NMA/EP共混物的结晶度先减小后增加,但热稳定性呈现先增加后减小的趋势;当EP与PA的质量比为2%时,PA6/NMA/EP共混物的热变形温度和拉伸强度均达到最大值72.8℃和77.7 MPa,分别较纯PA6的提高了37.6%和11.8%;而弯曲强度随EP与PA6的质量比的增加呈现逐渐增大的趋势。  相似文献   

8.
采用熔融共混法制备了尼龙(PA)66/马来酸酐接枝乙烯-辛烯共聚物(POE-g-MAH)/纳米TiO2复合材料,通过万能材料试验机、冲击试验机、熔体流动速率(MFR)测试仪等研究了POE-g-MAH对复合材料力学性能及MFR的影响,利用Molau实验和FSEM考察了POE-g-MAH与PA66的相容性。结果显示,POE-g-MAH与PA66基体有很好的相容性;随着POE-g-MAH用量的增加,PA66/POE-g-MAH/纳米TiO2复合材料的缺口冲击强度逐渐增加,拉伸强度、弯曲强度、拉伸弹性模量及MFR逐渐降低;当POE-g-MAH质量分数为12%时,复合材料的综合性能最佳,缺口冲击强度、拉伸强度、弯曲强度、拉伸弹性模量和MFR分别为20.89kJ/m2,41.15MPa,64.2MPa,1428.15MPa和19.2g/(10min)。  相似文献   

9.
以尼龙(PA)66和高流动性PA6为基体树脂,采用熔融共混方法制备了PA66/高流动性PA6/GF复合材料,考察了高流动性PA6用量对复合材料的结晶熔融行为、热变形温度(HDT)、熔体流动速率(MFR)、表面性能和力学性能的影响。结果表明,在GF质量分数为40%的情况下,当高流动性PA6用量不高于基体树脂总质量的20%时,复合材料表现出PA66的结晶熔融行为特征,HDT随高流动性PA6用量的增加略有下降;随高流动性PA6用量增加,复合材料的MFR显著提升;当高流动性PA6用量达到基体树脂总质量的20%时,复合材料制品表面浮纤问题得到解决,此时复合材料的拉伸和弯曲强度与未加高流动性PA6时相当,简支梁和悬臂梁缺口冲击强度则分别提高了17.6%和16.4%,MFR为18.3 g/10 min,较未加高流动性PA6时提升1倍,具有最佳的综合性能。  相似文献   

10.
采用原位熔融接枝法制备了接枝率为0.45%的POE-g-GMA相容剂,并熔融挤出制备了PA6/POE-g-GMA/POE共混物。同时利用DSC、XRD、TG、SEM以及微机控制万能电子试验机测试了共混物的微观结构、热性能及力学性能。结果表明,当POE-g-GMA、POE用量均为10%时,共混体系的结晶温度有所降低,分解峰温度升高,拉伸强度为58.4 MPa,简支梁缺口冲击强度为14.2 kJ/m2。相比纯PA6和PA6/POE的冲击强度分别提升了132.8%、71.1%,拉伸强度小幅降低。自制相容剂可显著降低POE在PA6基体中的分散性,降低POE分散相尺寸,共混物呈现“韧窝”态的韧性断裂特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号