共查询到20条相似文献,搜索用时 15 毫秒
1.
The regeneration system represents a vital part of any desiccant air conditioning system. The need of a solar assisted desiccant regeneration system is more important today. In this paper, an experimental study of a novel regeneration system modified from solar tilted still is carried out. A corrugated blackened surface is used to heat the desiccant and an air flow is used to regenerate calcium chloride solution. The effect of the liquid to air flow rate ratio; the desiccant temperature; the desiccant concentration and the inlet air humidity ratio on the evaporation rate has been studied experimentally. A wide range of liquid to air flow rate ratios are employed. The optimum value of the liquid to air flow rate ratio for higher evaporation rate is reported. 相似文献
2.
The regeneration of silica gel desiccant by a solar air heater for use in an air-conditioning system has been investigated. The hot air is produced by a compound parabolic concentrator collector (CPC), which has aperture and receiver areas 1.44 and 0.48 m 2, respectively. The regeneration temperature can be started at 40 oC. The regeneration rate and the regeneration efficiency were greatly affected by the solar radiation, but depended only slightly on the different initial moisture contents of silica gel and the number of silica gel beds. The regeneration of silica gel provided by the CPC collector is suitable for a tropical climate where the diffuse solar radiation is high all the year round. 相似文献
3.
An integrated desiccant/solar collector system for production of fresh water from atmospheric air is described. The solar driven system provided about 1.5 l of fresh water per square meter per day. The system involves the absorption of water vapor from ambient air during the night and simultaneous desiccant regeneration and water vapor condensation during the day. To enhance the mass transfer surface, a thick corrugated layer of cloth was used as a bed to carry the liquid absorbent. In the nocturnal phase of operation, air is allowed to penetrate the desiccant bed. The airflow is driven by fans supported on one side of the desiccant/solar collector unit. In this study, the effects of different parameters on the absorption and regeneration processes are discussed, and operational conditions for the proposed equipment evaluated. Radiation intensity, ambient temperature, bed temperature and temperature of the glass surface were recorded. Also, the productivity of the system during the day and under the given operation conditions was plotted. A mathematical model was prepared and its output compared with the analyzed experimental data. 相似文献
4.
Growing demand for air conditioning in recent years has caused a significant increase in demand for primary energy resources. Solar-powered cooling is one of the environmentally-friendly techniques which may help alleviate the problem. A promising solar cooling method is through the use of a liquid desiccant system, where humidity is absorbed directly from the process air by direct contact with the desiccant. The desiccant is then regenerated, again in direct contact with an external air stream, by solar heat at relatively low temperatures. The liquid desiccant system has many potential advantages over other solar air conditioning systems and can provide a promising alternative to absorption or to solid desiccant systems.Earlier work by the authors included theoretical simulations and preliminary experiments on the key components of the liquid desiccant system. The objective of the present study has been to construct a prototype system based on the knowledge gained, to monitor its performance, identify problems and carry out preliminary design optimization. A 16 kWt system was installed at the Energy Engineering Center at the Technion, in the Mediterranean city of Haifa. The system comprises a dehumidifier and a regenerator with their associated components operating together to dehumidify the fresh (ambient) air supply to a group of offices on the top floor of the building. LiCl-water is employed as the working fluid. The system is coupled to a solar collector field and employs two methods of storage – hot water and desiccant solution in the regenerated state. The performance of the system was monitored for five summer months under varying operating conditions. The paper describes the operation of the experimental system and presents the measured data and the calculated performance parameters. 相似文献
5.
In this paper, a solar hybrid desiccant air conditioning system, which combines the technologies of two-stage desiccant cooling (TSDC) and air-source vapor compression air-conditioning (VAC) together, has been configured, experimentally investigated and theoretically analyzed. The system mainly includes a TSDC unit with design cooling capacity for 10 kW, an air-source VAC unit with 20 kW in nominal cooling capacity, a flat plate solar collector array for 90 m 2, a hot water storage tank and a cooling tower. Performance model of the system has been created in TRNSYS simulation studio. The objective of this paper is to report the test result of the solar hybrid air conditioning system and evaluate the energy saving potential, thereby providing useful data for practical application. Experimental results show that, under typical weather condition, the solar driven desiccant cooling unit can achieve an average cooling capacity of 10.9 kW, which contributes 35.7% of the cooling capacity provided by the hybrid system. Corresponding average thermal COP is over 1.0, electric COP is up to 11.48. Under Beijing (temperate), Shanghai (humid) and Hong Kong (extreme humid) weather conditions, the solar TSDC unit can remove about 57%, 69% and 55% of the seasonal moisture load, thereby reducing electric power consumption by about 31%, 34% and 22%, respectively. These suggest that the solar hybrid system is feasible for a wide range of operating conditions. 相似文献
6.
Liquid desiccant dehumidification was proved to be an effective method to extract the moisture from air with a relatively less energy. An experimental study was carried out to evaluate the liquid desiccant system performance during dehumidification and humidification processes using an injected air through the liquid desiccant solution (calcium chloride). A different air mass flow rates though the desiccant solution was considered during the experimental work. The desiccant system was studied at different operating conditions like different temperatures, different humidity ratios and different solution levels. The effectiveness for both the dehumidification and humidification processes was calculated through this work. It was found that, the system effectiveness reached to 0.87 in the dehumidification and about 0.92 in the humidification process. Also; the experimental results showed a mass transfer coefficient of 28 kg s −1 m 2 mm Hg at an air mass flow rate of 0.022 kg s −1 in the dehumidification process. The cooling effect factor was also studied and analyzed during that work. 相似文献
7.
In this paper the results of testing a solar liquid desiccant air conditioner (LDAC) in the tropical climate of Queensland, Australia have been presented. The system uses polymer plate heat exchanger (PPHE) for dehumidification/indirect evaporative cooling, and a cooling pad as the direct evaporative cooler for the dry air leaving the PPHE. Lithium chloride, which is an effective desiccant in air dehumidification, was used in the experiments and a scavenger air regenerator concentrates the dilute solution from the dehumidifier using hot water from flat plate solar collectors. The data obtained from performance monitoring of the solar LDAC operating on a commercial site in Brisbane was compared with a previously developed model for the PPHE. The comparison reveals that good agreement exists between the experiments and model predictions. The inaccuracies are well within the measuring errors of the temperature, humidity and the air and solution flow rates. The above tests further indicate a satisfactory performance of the unit by independently controlling the air temperature and humidity inside the conditioned space. In order to prevent carryover of the solution particles into the environment, eliminators are used at outlet of the absorber unit and the regenerator. An alternative method in preventing the carryover is the use of indirect cooling, in which the supply air does not contact the solution. The method can be used to produce potable water from the atmospheric air in remote areas. The liquid desiccant system can be used in the HVAC industry, either as a packaged roof-top air conditioner, or as an air handler unit for commercial applications. The system could also be used for space heating in winter due to the property of desiccants to provide heat when wetted. 相似文献
8.
Theoretical and experimental investigation on the desorption characteristics of a packed porous bed is presented in this study. The granules of burned clay are applied as a desiccant carrier. Calcium chloride is used as the working desiccant. The theoretical model defines the transient gradient of air stream parameters (humidity and temperature) as well as desiccant concentration in the bed. In the experimental study, transient concentration gradient in the bed is evaluated by weight method. The bed is divided into seven separate layers. Air stream at low temperature and nearly constant inlet parameters are used for desorption purposes. Concentration gradient in the bed is found highly dependent on the mass transfer rate. For the specified operating conditions and stated assumptions, experimental measurements shows acceptable agreement with the analytical solution. 相似文献
9.
The results of experiments performed on two non-porous solar absorber solar air heaters with and without fins have been reported in this communication. The experiments were performed under laboratory conditions. Air heaters with fins are seen to be more efficient in comparison to the air heater without fins for air flow rates ≤0.0388 kg/sec per m 2. The experimental results have been used to validate a simple theoretical model. 相似文献
10.
This paper presents an investigation on the natural absorption of water vapour of the gaseous-air mixture on the horizontal surface of a sandy layer impregnated with calcium chloride as the working desiccant. Seven layers with different values of desiccant to sand mass ratio in the range from 0.1 to 0.4 are studied. Isothermal absorption is assumed in this analysis. The effect of desiccant concentration as well as Grashof number on the mass transfer coefficient is discussed. Also, the effect of the mixing ratio (desiccant/sand) in the bed on the rate of absorption is demonstrated. Experimental results show that the mass transfer coefficient is highly affected by the desiccant concentration in the bed. Also, it is found that the potential of mass transfer rapidly decreases with a decrease in mixing ratio. 相似文献
11.
This paper reports the development and construction of the novel solar cooling and heating system. The system consists of the thermal energy subsystem and the desiccant cooling subsystem. The system utilizes both the cheaper nighttime electric energy and the free daytime solar energy. The system is conceptualized to produce both cooling during summer daytime and hot water production during winter. Testing and evaluation of the system had been done to determine its operational procedure and performance. Based on the results, the thermal energy subsystem functioned to its expected performance in solar energy collection and thermal storage. The desiccant cooling subsystem reduced both the temperature and the humidity content of the air using solar energy with a minimal amount of back-up electric energy. The system however, needs further investigation under real conditions. 相似文献
12.
Component performance and seasonal operational experiences have been analysed for desiccant cooling systems powered by solar air collectors. Measurements during the commissioning phase in Spain (public library) and in Germany (production hall) showed that the dehumidification efficiency of the sorption rotors was 80% and the humidification efficiency of the contact evaporators was 85–86%. Only in a two-stage desiccant system monitored in China (laboratory building), a dehumidification efficiency of 88% was reached. The rotary heat exchangers only had 62–68% measured heat recovery efficiency, which is lower than specified. 相似文献
13.
Desiccant cooling is a technique based on evaporative cooling and air dehumidification using desiccant regenerated by thermal energy. It is particularly interesting when it is driven by waste or solar heat making this technique environmentally friendly.In this paper, an experimental investigation is carried on a desiccant air handling unit powered by vacuum-tube solar collectors. First, the components are studied under various operating conditions. Then overall performance of the installation is evaluated over a day for a moderately humid climate with regeneration solely by solar energy. In these conditions the overall efficiency of the solar installation is 0.55 while the thermodynamic coefficient of performance is 0.45 and the performance indicator based on the electrical consumption is 4.5. Finally, the impact of outside and regeneration conditions on the performance indicators is studied. 相似文献
14.
An experimental investigation has been carried out on a thermosyphon solar water heater. The system consisted of a flat-plate collector of 1.5 m 2 absorber area with 21 tubes/m width and storage tank of 125 litre capacity. Experiments were carried out for both cloudy and clear weather conditions in winter and summer. The hourly system performance was evaluated for all test conditions. The final mean tank temperature was measured daily which enabled the calculation of the possible contribution of solar energy for domestic hot water supply in Basrah, Iraq (latitude 30.76°N). The system was tested at both no-load and loading conditions. Intermittent and continuous load was imposed, and system performance was evaluated for each condition. 相似文献
15.
An indirect forced convection and desiccant integrated solar dryer is designed and fabricated to investigate its performance under the hot and humid climatic conditions of Chennai, India. The system consists of a flat plate solar air collector, drying chamber and a desiccant unit. The desiccant unit is designed to hold 75 kg of CaCl 2-based solid desiccant consisting of 60% bentonite, 10% calcium chloride, 20% vermiculite and 10% cement. Drying experiments have been performed for green peas at different air flow rate. The equilibrium moisture content Me is reached in 14 h at an air flow rate of 0.03 kg/m 2 s. The system pickup efficiency, specific moisture extraction rate, dimensionless mass loss, mass shrinkage ratio and drying rate are discussed in this paper. 相似文献
16.
在对液体除湿机理研究的基础上,建立了太阳能液体除湿空调系统实验台,采用氯化钙溶液作为除湿剂,对系统的除湿性能进行了实验研究,对影响除湿的各主要因素进行了分析。 相似文献
17.
Rotary desiccant air conditioning system, which combines the technologies of desiccant dehumidification and evaporative cooling, is advantageous in being free from CFCs, using low grade thermal energy and controlling humidity and temperature separately. Compared with conventional vapor compression air conditioning system, it preserves the merits of environment-friendly, energy saving, healthy, comfortable, etc. Ongoing research and development works suggest that new desiccant materials and novel system configurations have significant potential for improving the performance and reliability and reducing the cost and size of rotary desiccant dehumidification and air conditioning system, thereby increasing its market competitiveness and breaking out the current fairly small niche market. For the purpose of providing an overview of recent efforts on these issues and showing how rotary desiccant air conditioning systems can be designed and coupled to available thermal energy, this paper presents and analyzes the status of rotary desiccant dehumidification and air conditioning in the following three aspects: the development of advanced desiccant materials, the optimization of system configuration and the utilization of solar energy and other low grade heat sources, such as solar energy, district heating, waste heat and bioenergy. Some key problems to further push forward the research and development of this technology are also summarized. 相似文献
18.
This article experimentally and theoretically investigates a two-phase thermosyphon solar water heater. The performance of this innovative solar water heater at different solar radiation intensities and tilt angles are experimentally discussed. The results show the best charge efficiency of the system is 82%, which is higher than the conventional solar water heaters. The theoretical model is also developed using the thermal resistance-capacitor method. The simulation predictions agree well with the experimental data within an average error deviation of ±6%. Two methods for improving the performance of this heater, double fin tubes and nano particle, are proposed. The results show that charge efficiencies can increase 3% and 4%, respectively, according to the theoretical model. 相似文献
19.
This investigation reports a new type of solar water heating system without water pipes on the collector surface or a separate storage tank. The water to be heated continuously flows perpendicularly from an upper transparent cover to a porous absorber and is stored in a small volume beneath this assembly. Three different systems were designed, manufactured and tested but only one proved to be successful; this design indicated higher thermal efficiency compared to conventional collectors at high flow rates whereas at low flow rates the opposite is true. 相似文献
20.
The efficiency of the solar air collector can be enhanced by using metal vanes which are attached between the absorber and bottom plate of the collector. A mathematical model and solution procedure to study the effect of the metal vanes are presented. A method to select an optimal number of metal vanes, as well as an appropriate depth for the flowing air duct, has been developed. Moreover, a comparison between the performance of a collector having a box frame absorber and one having a finned plate absorber was carried out. The results show that a high efficiency can be achieved with the use of the metal vanes, particularly at smaller depths of the air duct. 相似文献
|