首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
A small-scale silica gel-water adsorption system with modular adsorber, which utilizes solar energy to achieve the cogeneration of domestic air conditioning and water heating effect, is proposed and investigated in this paper. A heat recovery process between two adsorbers and a mass recovery process between two evaporators are adopted to improve the overall cooling and heating performance. First, the adsorption system is tested under different modes (different mass recovery, heat recovery, and cogeneration time) to determine the optimal operating conditions. Then, the cogeneration performance of domestic cooling and water heating effect is studied at different heat transfer fluid temperatures. The results show that the optimal time for cogeneration, mass recovery, and heat recovery are 600 s, 40 s, and 40 s, respectively. When the inlet temperature of hot water is around 85°C, the largest cooling power and heating power are 8.25 kW and 21.94 kW, respectively. Under the condition of cooling water temperature of 35°C, the obtained maximum COPc, COPh, and SCP of the system are 0.59, 1.39, and 184.5 W/kg, respectively.  相似文献   

2.
Multi-effect distillation (MED) systems are proven and energy efficient thermally-driven desalination systems for handling harsh seawater feed in the Gulf region. The high cycle efficiency is markedly achieved by latent energy re-use with minimal stage temperature-difference across the condensing steam and the evaporating saline seawater in each stage. The efficacies of MED system are (i) its low stage-temperature-difference between top brine temperature (TBT) and final condensing temperature, (ii) its robustness to varying salinity and ability to handle harmful algae Blooming (HABs) and (iii) its compact foot-print per unit water output. The practical TBT of MED systems, hitherto, is around 65 °C for controllable scaling and fouling with the ambient-limited final condenser temperature, usually from 30 to 45 °C.The adsorption (ADC) cycles utilize low-temperature heat sources (typically below 90 °C) to produce useful cooling power and potable water. Hybridizing MED with AD cycles, they synergistically improve the water production rates at the same energy input whilst the AD cycle is driven by the recovered waste heat. We present a practical AD + MED combination that can be retrofitted to existing MEDs: The cooling energy of AD cycle through the water vapor uptake by the adsorbent is recycled internally, providing lower temperature condensing environment in the effects whilst the final condensing temperature of MED is as low as 5–10 °C, which is below ambient. The increase in the temperature difference between TBT and final condensing temperature accommodates additional MED stages. A detailed numerical model is presented to capture the transient behaviors of heat and mass interactions in the combined AD + MED cycles and the results are presented in terms of key variables. It is observed that the water production rates of the combined cycle increase to give a GOR of 8.8 from an initial value of 5.9.  相似文献   

3.
To increase the driving range of electric vehicles in cold climate, air conditioning heat pump (ACHP) system is supposed to be the most effective solution. Working near 0°C with high humidity, the microchannel outdoor heat exchanger (OHX) in system would experience badly frosting process, like traditional residential heat pump system. It would lead to a significant reduction of system performance without defrosting in time. In this article, experimental investigation has been implemented on the frosting process of ACHP system of electric vehicles which is with a microchannel OHX. The phenomenon of frosting distribution was observed, the frosted part on surface shows uneven with various flows paths. The typical frosting characteristics of an outdoor microchannel heat exchanger were also obtained. In a self-designed three-heat exchanger ACHP system, the inlet and outlet refrigerant temperature of OHX as well as the outlet air temperature of system decrease with increasing frosting coverage rate. The frosting phenomenon was analyzed with variation of ambient temperature and humidity. System influence by frosting was also studied with under different ambient conditions. When OHX begins to frost, the heating capacity reduction of system under different ambient conditions were both increased but the differences in the coefficient of performance (COP) variations under different ambient conditions were small as frosting progressed.  相似文献   

4.
何优贤  肖书博  傅立新 《节能》2010,29(4):61-63
对联合国环境规划署亚太资源中心办公楼采用的新型热回收新风机加空调盘管的集中空调系统进行分析,详细阐述了热回收新风机的特点、优势及节能潜力。对办公建筑的空调系统改造具有一定的指导意义。  相似文献   

5.
Homogeneous charge compression ignition (HCCI) is a promising technique to achieve high thermal efficiency and clean exhaust with internal combustion engines. However, the difficulty in ensuring optimal ignition timing control prevents its practical application. Previous research has shown that adjusting the proportion of dimethyl ether (DME) and hydrogen-containing methanol-reformed gas (MRG) can control the ignition timing in an HCCI combustion engine fueled with the two fuels. As both DME and MRG can be produced in endothermic methanol reforming reactions, onboard reforming utilizing the exhaust gas heat can recover the waste heat from the engine. A very high overall thermal efficiency can be achieved by combining the high engine efficiency with HCCI and the waste heat recovery. This research investigates the basic characteristics of methanol reforming in a reactor tube with different catalysts with the aim to produce fuels for the HCCI combustion system.  相似文献   

6.
This article considers the application of flame emission models used for predicting the thermal radiation fluxes from flames and fires within a computational fluid dynamic framework, used in conjunction with the discrete transfer method. The flame emission models differ in their generality, sophistication, accuracy and computational cost, and are assessed in terms of their ability to predict radiation transfer in idealised situations, as well as flames in tubes representative of burner systems, laboratory-scale jet flames and wind-blown jet fires. It is concluded that the implementation of simple flame emission models, based on the grey gas assumption, must be treated with caution due to convergence problems. The key problem occurs when the grey absorption coefficient is based on a length scale linked to the size of the control volume. This issue is well known in the radiation modelling community, but not so in the combustion modelling community. Use of models based on the banded mixed grey gas, TTNH, wide and narrow band approaches yield satisfactory results for all the simulated flames and fires considered, typically being within 20% of the measured radiation heat flux.  相似文献   

7.
Major failures in wind turbines are expensive to repair and cause loss of revenue due to long downtime. Condition‐based maintenance, which provides a possibility to reduce maintenance cost, has been made possible because of the successful application of various condition monitoring systems in wind turbines. New methods to improve the condition monitoring system are continuously being developed. Monitoring based on data stored in the supervisory control and data acquisition (SCADA) system in wind turbines has received attention recently. Artificial neural networks (ANNs) have proved to be a powerful tool for SCADA‐based condition monitoring applications. This paper first gives an overview of the most important publications that discuss the application of ANN for condition monitoring in wind turbines. The knowledge from these publications is utilized and developed further with a focus on two areas: the data preprocessing and the data post‐processing. Methods for filtering of data are presented, which ensure that the ANN models are trained on the data representing the true normal operating conditions of the wind turbine. A method to overcome the errors from the ANN models due to discontinuity in SCADA data is presented. Furthermore, a method utilizing the Mahalanobis distance is presented, which improves the anomaly detection by considering the correlation between ANN model errors and the operating condition. Finally, the proposed method is applied to case studies with failures in wind turbine gearboxes. The results of the application illustrate the advantages and limitations of the proposed method. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号