首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a comparative study of two energy system analysis models both designed for the purpose of analysing electricity systems with a substantial share of fluctuating renewable energy. The first model (EnergyPLAN) has been designed for national and regional analyses. It has been used in the design of strategies for integration of wind power and other fluctuating renewable energy sources into the future energy supply. The model has been used for investigating new operation strategies and investments in flexibility in order to utilize wind power and avoid excess production. The other model (H2RES) has been designed for simulating the integration of renewable sources and hydrogen into island energy systems. The H2RES model can use wind, solar and hydro as renewable energy sources and diesel blocks as backup. The latest version of the H2RES model has an integrated grid connection with the mainland. The H2RES model was tested on the power system of Porto Santo Island, Madeira, Portugal, Corvo and Graciosa Islands, Azores Islands, Portugal and Sal Island, Cape Verde. This paper presents the results of using the two different models on the same case, the island of Mljet, Croatia. The paper compares methodologies and results with the purpose of identifying mutual benefits and improvements of both models.  相似文献   

2.
《Energy Policy》2005,33(2):209-219
This study uses optimization modeling to study efficient ways to integrate renewable energy systems to provide electricity and heat in rural Japan. The model provides minimum cost system configuration and operation taking into account hour-by-hour energy availability and demand. Grid electricity is available to rural areas of Japan, but it is relatively expensive. Local renewable energy generation can be economic while using grid electricity to compensate for the intermittency of the renewable generation. In the model, renewable electricity can be provided by a combination of wind, photovoltaic, and biomass. Heat can be provided by petroleum, LPG, and geothermal heat pumps (GHPs). We find that due to the relatively high cost of grid electricity, there is significant penetration of wind generation. In turn, the penetration of wind creates economic conditions that encourage GHP penetration. The integrated renewable system reduces the annual cost of the entire system by 31%, and reduces the carbon emissions by 50%.  相似文献   

3.
Large-scale sustainable energy systems will be necessary for substantial reduction of CO2. However, large-scale implementation faces two major problems: (1) we must replace oil in the transportation sector, and (2) since today's inexpensive and abundant renewable energy resources have fluctuating output, to increase the fraction of electricity from them, we must learn to maintain a balance between demand and supply. Plug-in electric vehicles (EVs) could reduce or eliminate oil for the light vehicle fleet. Adding “vehicle-to-grid” (V2G) technology to EVs can provide storage, matching the time of generation to time of load. Two national energy systems are modelled, one for Denmark, including combined heat and power (CHP) and the other a similarly sized country without CHP (the latter being more typical of other industrialized countries). The model (EnergyPLAN) integrates energy for electricity, transport and heat, includes hourly fluctuations in human needs and the environment (wind resource and weather-driven need for heat). Four types of vehicle fleets are modelled, under levels of wind penetration varying from 0% to 100%. EVs were assumed to have high power (10 kW) connections, which provide important flexibility in time and duration of charging. We find that adding EVs and V2G to these national energy systems allows integration of much higher levels of wind electricity without excess electric production, and also greatly reduces national CO2 emissions.  相似文献   

4.
H. Lund   《Renewable Energy》2006,31(4):503-515
This article presents the results of analyses of large-scale integration of wind power, photo voltaic (PV) and wave power into a Danish reference energy system. The possibility of integrating Renewable Energy Sources (RES) into the electricity supply is expressed in terms of the ability to avoid excess electricity production. The different sources are analysed in the range of an electricity production from 0 to 100% of the electricity demand. The excess production is found from detailed energy system analyses on the computer model EnergyPLAN. The analyses have taken into account that certain ancillary services are needed in order to secure the electricity supply system.The idea is to benefit from the different patterns in the fluctuations of different renewable sources. And the purpose is to identify optimal mixtures from a technical point of view. The optimal mixture seems to be when onshore wind power produces approximately 50% of the total electricity production from RES. Meanwhile, the mixture between PV and wave power seems to depend on the total amount of electricity production from RES. When the total RES input is below 20% of demand, PV should cover 40% and wave power only 10%. When the total input is above 80% of demand, PV should cover 20% and wave power 30%. Meanwhile the combination of different sources is alone far from a solution to large-scale integration of fluctuating resources. This measure is to be seen in combination with other measures such as investment in flexible energy supply and demand systems and the integration of the transport sector.  相似文献   

5.
As a consequence of technological progress, wind power has emerged as one of the most promising renewable energy sources. Currently, the penetration level of wind energy in power systems has led to the modification of several aspects of power system behaviour including stability. Due to this large penetration, transmission system operators have established some special grid codes for wind farms connection. These grid codes require wind farms to provide ancillary services to the grid such as frequency regulation and reactive power regulation. In the near future, the capability of damping system oscillations will be required. For this reason, the influence of grid-connected wind farms on system oscillations is reviewed in this paper, focusing on the contribution or damping of power system oscillations, and on inner wind turbine oscillations.  相似文献   

6.
This paper presents a comprehensive review of fault ride through (FRT) in the grid code of 38 selected countries with an emphasis on renewable energy (REN) sources–related rules. Grid codes are the rules legislated usually by the transmission system operators (TSOs) to determine the grid integration requirements of electrical power generators. Each country establishes its grid code for satisfying the minimum required technical criteria and revises it frequently to cope with new modifications of the utility. Growing the penetration of REN sources have influenced many operational aspects of the power system such as protection, power quality, reliability, and stability. Thereupon, regulations must ensure the power system's secure and controllable operation of REN sources. FRT is one of the main parts of the grid code, and its characteristics affect the performance and rating of power system apparatus. FRT defines the performance of electric power generators during and in postfault conditions. FRT of solar photovoltaic (PV) and wind turbines (WTs) as the main REN sources of energy has great importance in the grid codes. In this paper, a comparison of FRTs in the grid code of 38 countries, including low‐voltage ride through (LVRT), zero‐voltage ride through (ZVRT), and high‐voltage ride through (HVRT) are provided and surveyed.  相似文献   

7.
In Denmark, a technological change towards cleaner energy technologies has been developed and implemented since around 1975. This development has had two phases: The first from 1975 until around 1996, when wind power was a niche production that supplied only 3.5% of the electricity consumption and was brought close to cost competitiveness, and the present second phase, in which wind power supplies an increasing share (in 2004 18.6%) of electricity consumption along with combined heat and power plants, which supply around 50% of consumption. Denmark succeeded in overcoming the first phase, and a large green energy technology cluster was established. During the second phase, new difficulties and challenges have arisen, both with regard to local public acceptance and the need for integrating an increasing percentage of fluctuating energy sources into the energy system. In this Phase 2, a new offensive green energy policy should be introduced in order to secure both public and political acceptance. Local markets should be established in order to secure the technical integration of a large proportion of wind power and other fluctuating renewable energy sources into the energy system.  相似文献   

8.
In this study a model of the Irish energy-system was developed using EnergyPLAN based on the year 2007, which was then used for three investigations. The first compares the model results with actual values from 2007 to validate its accuracy. The second illustrates the exposure of the existing Irish energy-system to future energy costs by considering future fuel prices, CO2 prices, and different interest rates. The final investigation identifies the maximum wind penetration feasible on the 2007 Irish energy-system from a technical and economic perspective, as wind is the most promising fluctuating renewable resource available in Ireland. It is concluded that the reference model simulates the Irish energy-system accurately, the annual fuel costs for Ireland's energy could increase by approximately 58% from 2007 to 2020 if a business-as-usual scenario is followed, and the optimum wind penetration for the existing Irish energy-system is approximately 30% from both a technical and economic perspective based on 2020 energy prices. Future studies will use the model developed in this study to show that higher wind penetrations can be achieved if the existing energy-system is modified correctly. Finally, these results are not only applicable to Ireland, but also represent the issues facing many other countries.  相似文献   

9.
The transition to a low carbon energy portfolio necessitates a reduction in the demand of fossil-fuel and an increase in renewable energy generation and penetration. Wind energy in particular is ubiquitous, yet the stochastic nature of wind energy hinders its wide-spread adoption into the electric grid. Numerous techniques (improved wind forecasting, improved wind turbine design and improved power electronics) have been proposed to increase the penetration of wind energy, yet only a few have addressed the challenges of wind intermittency, grid stability and flexibility simultaneously. The problem of excess wind energy results in wind curtailment and has plagued large scale wind integration. NREL's HOMER software is used to show that a strong negative correlation exists between the cycles to failure of a storage device and the excess wind energy on the system. A 1 MJ magnesium-diboride superconducting magnetic energy storage (SMES) system is designed to alleviate momentary interruptions (lasting from a few milli-seconds to a few minutes) in wind turbines. The simulation results establish the efficacy of SMES coupled with wind turbines improve output power quality and show that a 1 MJ SMES alleviated momentary interruptions for ∼50 s in 3 MW wind turbines. These studies suggest that SMES when coupled to wind turbines could be ideal storage devices that improve wind power quality and electric grid stability.  相似文献   

10.
Dan-Ioan Gota  Henrik Lund 《Energy》2011,36(11):6413-6419
This paper presents a model of the Romanian energy system with the purpose of providing a tool for the analysis of future sustainable energy strategies. The model represents the total national energy system and is detailed to the level of hourly demand and production in order to be able to analyse the consequences of adding fluctuating renewable energy sources to the system. The model has been implemented into the EnergyPLAN tool and has been validated in order to determine if it can be used as a reference model for other simulations. In EnergyPLAN, two different future strategy scenarios for the Romanian energy system are compared to the actual data of Romania of year 2008. First, a comparison is made between the 2008 model and the 2013 strategy scenario corresponding to the grid of the Romanian transmission system operator (TSO) Transelectrica. Then, a comparison is made to a second strategy scenario in which the installed nuclear capacity is reduced by 50%.  相似文献   

11.
From the perspective of global warming mitigation and depletion of energy resources, renewable energy such as wind generation (WG) and photovoltaic generation (PV) are getting attention in distribution systems. Additionally, all-electric apartment houses or residence such as DC smart houses are increasing. However, due to the fluctuating power from renewable energy sources and loads, supply-demand balancing of power system becomes problematic. Smart grid is a solution to this problem. This paper presents a methodology for optimal operation of a smart grid to minimize the interconnection point power flow fluctuation. To achieve the proposed optimal operation, we use distributed controllable loads such as battery and heat pump. By minimizing the interconnection point power flow fluctuation, it is possible to reduce the electric power consumption and the cost of electricity. This system consists of photovoltaic generator, heat pump, battery, solar collector, and load. To verify the effectiveness of the proposed system, results are used in simulation presented.  相似文献   

12.
H. Lund  E. Münster 《Renewable Energy》2003,28(14):2179-2193
This paper presents the energy system analysis model EnergyPLAN, which has been used to analyse the integration of large scale wind power into the national Danish electricity system. The main purpose of the EnergyPLAN model is to design suitable national energy planning strategies by analysing the consequences of different national energy investments. The model emphasises the analysis of different regulation strategies and different market economic optimisation strategies.At present wind power supply 15% of the Danish electricity demand and ca 50% is produced in CHP (combined heat and power production). The model has been used in the work of an expert group conducted by the Danish Energy Agency for the Danish Parliament. Results are included in the paper in terms of strategies, in order to manage the integration of CHP and wind power in the future Danish energy supply in which more than 40% of the supply is expected to come from wind power.  相似文献   

13.
The increase of the wind power penetration in the electrical grids of Denmark, Germany, Spain and other countries and regions is challenging the stability of the system. The subject of this paper is to review the main problems of the connection of wind farms to the grid and how the grid codes must be adapted in order to integrate wind power generation capacity without affecting the quality and stability of the grid. This paper also summarizes the grid codes that have already been modified to incorporate high levels of wind power.  相似文献   

14.
罗承先 《中外能源》2012,17(5):32-39
近年来可再生能源发电发展迅速,其中风力发电表现尤为突出.在一些风电先行国家的推动下,风电机组大型化取得长足进展,单机容量从亚兆瓦级迅速提升到兆瓦级,研制中的10MW级风电机组即将问世.机组的大型化提高了风电的经济性和竞争力.风机设备利用率将由目前的25%左右提高至2015年的28%,同时投资成本将大幅下降,按照GWEC的高增长方案预测,投资成本将由2009年的1350欧元/kW降至2030年的1093欧元/kW.鉴于风力发电的间歇性和随机性,蓄电技术成为大量引入可再生能源的有效手段,美欧日等都投入专项经费支持蓄电技术的研究开发.IEA最近在报告中指出,与热电联产组合的方式可大幅扩大可再生能源的利用,其重点在于热供应.智能电网将成为解决风电大规模接入和输送问题的根本途径,它将使电力系统整体利用效率大大提高,有利于抑制发电厂的化石燃料消费.我国在智能电网方面已取得了一定成果,但仍面临许多问题.各国政府的可再生能源电力收购政策促进了风电产业的发展,其中德国的风电收购政策值得我国借鉴.  相似文献   

15.
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories: (1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 °C ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies; (2) system innovation and specific, high- efficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization; (3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle (IGCC) and integrated gasification fuel cell (IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system (CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.  相似文献   

16.
由于可再生能源并网会带来随机性和波动性,高比例可再生能源并网的暂态特性与传统电力系统有显著区别。因此,研究了在高比例可再生能源并网中加入储能装置对系统暂态稳定性的影响。首先建立了双馈风力发电机的模型和等值的双机群系统节点导纳矩阵,并对送端机组机械功率增量和双馈风机外特性的关系进行了理论推导,在此基础上分析了高比例风电渗透率对风火打捆系统功角稳定性的影响,然后建立储能模型,仿真分析了有无储能装置对风电渗透率的影响。结果表明,加入储能装置后,可使同步机的第一摆角度有效减小,且在风电渗透率增大的同时,更好地维持了系统的暂态稳定性。  相似文献   

17.
S. Padrón  J.F. Medina  A. Rodríguez 《Energy》2011,36(12):6753-6762
A significant number of islands have been forced to restrict the penetration level of renewable energy sources (RES) in their conventional electrical power systems. These limitations attempt to prevent problems that might affect the stability and security of the electrical system. Restrictions that may apply to the penetration of wind energy can also be an obstacle when meeting European Union renewable energy objectives. As a partial solution to the problem, this paper proposes the installation of a properly managed, wind-powered, pumped hydro energy storage system (PHES) on the island of Gran Canaria (Canary Islands). Results from a dynamic model of the island’s power system show that the installation of a pumped storage system is fully supported in all circumstances. They also show that the level of wind penetration in the network can be increased. These results have been obtained assuming that two of the largest existing reservoirs on the island (with a difference in altitude of 281 m and a capacity of aprox. 5,000,000 m3 each) are used as storage reservoirs with three 54 MW generators. Likewise, the ability of such facilities to contribute to the stability of the system is shown. This type of installation can reduce fossil fuel consumption, reducing CO2 emissions. Moreover, not only can the PHES improve wind penetration level, but it also allows the number of wind farms installed to be increased. Regions with geographically suitable sites and energy problems similar to those on the Canary Islands are encouraged to analyze the technical and economic feasibility of installing similar power systems to the one in this paper. Such systems have an enormous, unexplored potential within the general guiding framework of policies promoting clean, renewable energy.  相似文献   

18.
19.
Increasing penetration of fluctuating energy sources for electricity generation, heating, cooling and transportation increase the need for flexibility of the energy system to accommodate the fluctuations of these energy sources. Controlling production, controlling demand and utilising storage options are the three general categories of measures that may be applied for ensuring balance between production and demand, however with fluctuating energy sources, options are limited, and flexible demand has also demonstrated limited perspective. This article takes its point of departure in an all-inclusive 100% renewable energy scenario developed for the Danish city Aalborg based on wind power, bio-resources and low-temperature geothermal heat. The article investigates the system impact of different types of energy storage systems including district heating storage, biogas storage and electricity storage. The system is modelled in the energy systems analyses model energyPRO with a view to investigating how the different storages marginally affect the amount of wind power that may be integrated applying the different storage options and the associated economic costs. Results show the largest system impact but also most costly potential are in the form of electricity storages.  相似文献   

20.
Nowadays renewable sources are being used as clean sources to generate electricity and to reduce the dependency on fossil fuels. The uses of renewable sources are being increased in electricity generation and contributed to reduce the greenhouse gas emission. The function of any electrical power system is to connect everyone sufficiently, clean electric power anywhere and anytime of the country. This can be achieved through a modern power system by integrating electrical energy from clean renewable sources into the nation's electric grid to enhance reliability, efficiency and security of the power system. The paper on the status of review the driving force of the generation of renewable energy and proposing electrical energy generation from renewable sources to be ensured at least 20% of total energy of Australia. This paper has been studied the existing electricity generation capacity of Australia from renewable and non-renewable sources. Optimal electricity generation from renewable sources has been examined. The environmental impact of electricity generation from renewable sources has been considered. Under this paper the yearly average wind data of past 20 years and above for some meteorological stations of Australia have been used. The prospective electricity generation from wind turbines and solar photovoltaic panels has been proposed in the paper that will increase electrical energy of the power grid of Australia. It was estimated the capital cost of prospective electricity generation farms from wind and solar PV sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号