首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitosan/tripolyphosphate nanoparticles are promising drug delivery systems, which show excellent capacity for protein entrapment and improvement of mucosal peptide absorption. We have recently developed a new drug delivery system consisting of assemblies formed between preformed chitosan nanoparticles and phospholipids (dipalmitoylphosphatidylcholine and dimiristoylphosphatidylglycerol) which are endogenous to the lung. These assemblies are prepared by lipid film hydration with a nanoparticles suspension. The aim of this work was to elucidate the architecture of these structures using sensitive surface analysis techniques such as X-ray photoelectron spectroscopy and static time-of-flight secondary ion mass spectrometry, as well as to determine their physicochemical characteristics. The combination of zeta potential measurements with the results obtained by X-ray photoelectron spectroscopy and static time-of-flight secondary ion mass spectrometry, demonstrated that a complete lipid coating of the nanoparticles can be achieved using a lipid film formed by both dipalmitoylphosphatidylcholine and dimiristoylphosphatidylglycerol, this way conferring to the lipid film a strong negative charge, which favors the interaction with the positively charged nanoparticles. Therefore, the major role of electrostatic interactions as driving forces to control the organisation of the lipid/nanoparticles assemblies was clearly evident. The implications of these findings for the structural organisation of the assemblies, for their in vitro behaviour, as well as for their mechanism of formation are discussed.  相似文献   

2.
The self‐organization of thin polymer films into functional patterns is important both scientifically and technologically. Electric fields have been exploited as an efficient and powerful means to induce the destabilization and self‐organization of soft materials. Previous attention, however, has mainly focused on externally applied electric fields. It is shown herein that the internal electric field is strong enough to guide the self‐organization of thin polymer films as well. Patterns of electrostatic charges with micrometer resolution are first introduced on a dielectric substrate. A thin polymer film is then spin‐coated onto the topographically flat substrate. Upon thermal annealing, the thin polymer film destabilizes due to a lateral gradient of electrostatic stress and flows away from the electroneutral regime to the charged area, resembling the patterns of charges on the substrate. Theoretical and numerical modeling based on the electrohydrodynamic instability shows excellent agreement with experimental observations both qualitatively and quantitatively. It is also demonstrated that the interplay between charge‐driven instability with spinodal dewetting and Rayleigh instabilities can generate finer and hierarchical polymeric patterns that are completely different from the charge patterns preintroduced on the substrate. This study provides direct evidence that the internal electric field caused by charges on the substrate is strong enough to destabilize thin polymeric films and generate patterns. This study also demonstrates new strategies for bottom‐up fabrication of structured functional materials.  相似文献   

3.
It is well known that free electrons can be held onto the free surface of liquid helium through either their own image charges or through the effect of an externally applied electric field. The resultant electrostatic pressure causes films to thin. We have recently measured x-ray reflectivity from static films of isotopic mixtures of helium with an intense x-ray beam in the temperature range between 0.37 K and 1.3 K. Normally, no significant thickness variation with x-ray intensity is expected over a wide range of temperatures when the film is superfluid. We have found that even modest x-ray intensities affect the thickness of films containing only trace amounts of3He. We believe that the effect is due to x-ray produced photoelectrons, which thermalize in the vapor and then reside on the surface, attracted by both the film and a charged substrate. The temperature and concentration dependence is then due to the transport properties of the electrons at the surface. It may be possible to study the 2-D electron gas produced in this way by diffraction techniques.  相似文献   

4.
Controlling the molecular interactions through protein nanopores is crucial for effectively detecting single molecules. Here, the development of a hetero‐oligomeric nanopore derived from Nocardia farcinica porin AB (NfpAB) is discussed for single‐molecule sensing of biopolymers. Using single‐channel recording, the interaction of cyclic oligosaccharides such as cationic cyclodextrins (CDs) of different symmetries and charges with NfpAB is measured. Studies of the transport kinetics of CDs reveal asymmetric geometry and charge distribution of NfpAB. The applied potential promotes the attachment of the cationic CDs to the negatively charged pore surface due to electrostatic interaction. Further, the attached CDs are released from the pore by reversing the applied potential in time‐resolved blockages. Release of CDs from the pore depends on its charge, size, and magnitude of the applied potential. The kinetics of CD attachment and release is controlled by fine‐tuning the applied potential demonstrating the successful molecular transport across these nanopores. It is suggested that such controlled molecular interactions with protein nanopores using organic templates can be useful for several applications in nanopore technology and single‐molecule chemistry.  相似文献   

5.
The relationship between a model pulmonary surfactant system and various sized nanoparticles was investigated in this study. Diplamitoylphosphatidylcholine (DPPC) is the main lipid constituent of lung surfactant and has the ability to reach very high surface pressures (around 70 mN/m) upon compression. Due to these properties it was used as a model to simulate the lung surfactant film in vitro. The first objective of this study was to investigate the relationship between DPPC and various sized nanoparticles within the subphase through surface pressure-area isotherms. The second objective was to measure the surface potential of the different preparations (conducted on a mini-Langmuir trough) and to determine if an optimal nanoparticle size exists possessing a greater affinity for the DPPC film compared to other sizes. The results from the pressure area isotherms indicate that the interaction between DPPC and the nanoparticles is stable and that the 235 nm particles may represent an optimal size. Furthermore, the results from the surface potential experiments confirm that an interaction of the nanoparticles with the monolayer exists as indicated by surface-pressure area isotherms. Any even moderate interaction between nanoparticles and lung surfactant film might reduce or increase the surface potential of the surfactant film, and this might impact the deposition of the nanoparticles or other ligands which may be positively or negatively charged drugs within the surfactant film. Thus changes in surface potential due to nanoparticle interactions have to be taken into account for future drug targeting studies using nano-sized drug carriers.  相似文献   

6.
Electrostatic charge and its distribution in the dielectric layer of TiO2- and Cr2O3-added alumina electrostatic chucks has been studied. The electrostatic potential was evaluated at various applied voltages by an electrostatic potential meter and it demonstrated the existence of charges with opposite polarities. Direct SEM observation and toner development of the charged ceramic surface was carried out to clarify the charge distribution. The charge contrast was not uniform on the ceramic microstructure and the charge was distributed in the form of grains. Taking into consideration these results, the relationship between electrostatic charge distribution and ceramic microstructure is discussed.  相似文献   

7.
8.
We use atomic force microscopy (AFM) to determine electrostatic interactions between Si tips and Si wafers in aqueous electrolytes of variable composition. We demonstrate that dynamic force spectroscopy (DFS) in the frequency modulation (FM) mode with stiff cantilevers and sharp tips allows for a continuous detection of the tip-sample interactions without mechanical jump-to-contact instability and with substantially higher lateral resolution than standard colloidal probe measurements. For four different species of salt (NaCl, KCl, MgCl(2), CaCl(2)) we find repulsive electrostatic forces at the lowest salt concentrations (1 mM) that become progressively screened until they are dominated by attractive van der Waals forces at the highest concentration (100 mM). For the divalent cations the crossover from repulsive to attractive forces occurs at lower concentrations than for monovalent cations. Surface charges extracted from fits to standard Poisson-Boltzmann double layer theory indicate a rather weak dependence of the surface charge on the ion concentration. The high lateral resolution of our approach is illustrated by a 2D force field measurement over a patterned surface of a supported lipid bilayer on a mica substrate.  相似文献   

9.
Chung IY  Jang H  Lee J  Moon H  Seo SM  Kim DH 《Nanotechnology》2012,23(6):065202
We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges. This simulation method and the results can be utilized for analysis of the properties and behavior of the biosensor device, such as the sensing limit or the sensing resolution.  相似文献   

10.
A lipid-protein monolayer for a biosensor was prepared utilizing a Langmuir- Blodgett technique. The enzyme glucose oxidase was used as the protein. Three types of lipid were chosen to change the surface charge of the polar group. The enzyme was immobilized on the lipid monolayer by adsorption from the subphase solution onto the lipid monolayer on the air/water interface. It was found that the lipid-enzyme interaction was dominated by electrostatic forces, and the characteristics of the film can be controlled by expansion and recompression of the adsorbed monolayer. Finally, a glucose sensor was fabricated by depositing the film onto a hydrogen peroxide electrode.  相似文献   

11.
We propose an analytical approach to investigate the electrostatic impact of very small charged regions in the gate dielectric of dual-bit nonvolatile memory cells based on discrete trapping sites, such as SONOS, NROM, or nanocrystal memories. Our model is based on the analytical solution of the Poisson equation for the surface potential in a fresh memory cell in subthreshold conditions. Then, we evaluate the effect of a small pocket of trapped charge on the surface potential using the superposition principle. Our proposed model is particularly accurate for small charged regions, down to the effective charged length L/sub 2//spl sime/10 nm and for charge density up to Q/spl sime/10/sup 13/ cm/sup -2/. In addition, the proposed model represents a complementary approach to a previously developed model which was suitable for larger charged regions. Relevant consequences of the asymmetric charging of the storage layer on the electrical characteristics of discrete-trap memories are thoroughly analyzed. An analytical expression for the subthreshold slope factor S, the threshold voltage Vth, and a method for extracting an "effective" distribution of charges from the transfer characteristics are derived.  相似文献   

12.
We demonstrate a novel array-based diagnostic platform comprising lipid/polydiacetylene (PDA) vesicles embedded within a transparent silica-gel matrix. The diagnostic scheme is based upon the unique chromatic properties of PDA, which undergoes blue-red transformations induced by interactions with amphiphilic or membrane-active analytes. We show that constructing a gel matrix array hosting PDA vesicles with different lipid compositions and applying to blood plasma obtained from healthy individuals and from patients suffering from disease, respectively, allow distinguishing among the disease conditions through application of a simple machine-learning algorithm, using the colorimetric response of the lipid/PDA/gel matrix as the input. Importantly, the new colorimetric diagnostic approach does not require a priori knowledge on the exact metabolite compositions of the blood plasma, since the concept relies only on identifying statistically significant changes in overall disease-induced chromatic response. The chromatic lipid/PDA/gel array-based "fingerprinting" concept is generic, easy to apply, and could be implemented for varied diagnostic and screening applications.  相似文献   

13.
The dynamics of disassembly of microtubules deposited on surfaces is shown to be strongly dependent on the electrostatic interaction between the microtubule and the substrate. Fluorescence microscopy of microtubules adsorbed on a Poly-L-Lysine film and immersed in pure water show a drastic decrease in disassembly velocity compared to the microtubules in bulk water solutions. While microtubules suspended in pure water disassemble in seconds, the dissociation velocity of microtubules adsorbed on a Poly-L-Lysine film ranges from 0.8 to 1.0 microm/min in pure water. Kinetic Monte Carlo simulations of the microtubule dynamics indicate that a decrease in the dissociation velocity of unstable microtubules can be achieved by reducing the heterodimer dissociation rate constant of tubulin heterodimers constituting a single protofilament, adsorbed to the Poly-L-Lysine film. This model suggests that the reduction of the dissociation velocity originates from the electrostatic interactions between the positively charged amino groups of the Poly-L-Lysine film and the negatively charged microtubule surface.  相似文献   

14.
Despite intense research on biological and biomedical applications of nanoparticles, our understanding of their basic interactions with the biological environment is still incomplete. Systematic variation of the physicochemical properties of the nanoparticles is widely seen as a promising strategy to obtain further insights. In view of the key role of the protein adsorption layer forming on nanoparticles in contact with biofluids, we systematically varied the surface charge of proteins adsorbing onto nanoparticles by chemical modification so as to examine the effect of Coulomb forces in modulating nano‐bio interactions. We chose human serum albumin (HSA) as a model protein and ultra‐small, negatively charged fluorescent gold nanoclusters (AuNCs) as model nanoparticles. By using fluorescence and CD spectroscopies, we measured binding affinities and structural changes upon binding of the HSA variants. The strengths of the protein‐nanoparticle interactions were found to change substantially upon modifying the surface charge of HSA. Furthermore, by using inductively coupled plasma optical emission spectroscopy, confocal fluorescence microscopy, scanning transmission electron microscopy and cell viability assays, we observed that cellular interactions of the AuNCs, including their adherence to cell membranes, uptake efficiency and cytotoxicity, depended markedly on the different surface charges of the HSA variants adsorbed onto the nanoparticles. These results illustrate vividly that the cellular responses to nanoparticle exposure depend on the specific properties of the proteins that adsorb onto nanoparticles from biofluids.  相似文献   

15.
Electrostatic forces play a major role in maintaining both structural and functional properties of proteins. A major component of protein electrostatics is the interactions between the charged or titratable amino acid residues (e.g., Glu, Lys, and His), whose pK(a) (or the change of the pK(a)) value could be used to study protein electrostatics. Here, we report the study of electrostatic forces through experiments using a well-controlled model protein (T4 lysozyme) and its variants. We generated 10 T4 lysozyme variants, in which the electrostatic environment of the histidine residue was perturbed by altering charged and neutral amino acid residues at various distances from the histidine (probe) residue. The electrostatic perturbations were theoretically quantified by calculating the change in free energy (DeltaDeltaG(E)) using Coulomb's law. On the other hand, immobilized metal affinity chromatography (IMAC) was used to quantify these perturbations in terms of protein binding strength or change in free energy of binding (DeltaDeltaG(B)), which varies from -0.53 to 0.99 kcal/mol. For most of the variants, there is a good correlation (R(2) = 0.97) between the theoretical DeltaDeltaG(E) and experimental DeltaDeltaG(B) values. However, there are three deviant variants, whose histidine residue was found to be involved in site-specific interactions (e.g., ion pair and steric hindrance), which were further investigated by molecular dynamics simulation. This report demonstrates that the electrostatic (DeltaDeltaG(Elec)) and microstructural effects (DeltaDeltaG(Micro)) in a protein can be quantified by IMAC through surface histidine mediated protein-metal ion interaction and that the unique microstructure around a histidine residue can be identified by identifying the abnormal binding behaviors during IMAC.  相似文献   

16.
Abstract

It is well known in industrial applications involving powders and granular materials that the presence of electrostatic charges influences drastically the material flowing properties. The triboelectric charges are produced during flow at the contacts between the grains and at the contacts between the grains and the container. Unfortunately, the triboelectric effect is still poorly understood, even at the fundamental level. Therefore, the approach to solve practical problems is mostly empirical. Moreover, reproducible electrostatic measurements are difficult to perform. In the present study, the ability of a set of excipients and active pharmaceutical ingredients (APIs) to produce electrostatic charges during flow in contact with different materials is analyzed with a recently developed instrument called GranuCharge. While different excipients have almost the same triboelectric behavior and a low chargability, APIs show complex triboelectric properties. Some APIs charge a lot while other APIs charge less. Afterward, the electrostatic behavior of API/excipient blends is considered. We show that the net charge of the blend is a complex function of the relative quantity of API in the mixture. Moreover, both the quantity and the sign of the charge are found to depend on the material in contact with the powder during the flow.  相似文献   

17.
A portable free-fall electrostatic separator capable of analyzing gram quantities of charged powders is presented. Unlike a Faraday pail, in which only the net average charge-to-mass (Q/M) ratio of the particles sampled by the instrument is measured, an electrostatic separator is capable of separately measuring the charge-to-mass ratios of positively and negatively charged sampled powders. Thus, with an electrostatic separator it is possible to measure the mass fractions of powders that are charged with different polarities and the respective charge-to-mass ratios, along with the mass fraction of particles that are uncharged or charged below a threshold level. We describe a method of measuring the total charge of the collected particles in real time by incorporating an electrometer to integrate the current flowing through the collecting electrode to the high voltage power supply. In this manner, both the total charge and total mass of powder deposited on the two electrodes are measured in near real time, providing information on charge-to-mass ratio of the aerosol cloud sampled. Such real time measurements are often needed to analyze the electrostatic charging properties of small quantities of dispersed powder, particularly in such applications where the charge characteristics are of high importance.  相似文献   

18.
Peptides that self‐assemble into cross‐β‐sheet amyloid structures constitute promising building blocks to construct highly ordered proteinaceous materials and nanoparticles. Nevertheless, the intrinsic polymorphism of amyloids and the difficulty of controlling self‐assembly currently limit their usage. In this study, the effect of electrostatic interactions on the supramolecular organization of peptide assemblies is investigated to gain insights into the structural basis of the morphological diversities of amyloids. Different charged capping units are introduced at the N‐terminus of a potent β‐sheet‐forming sequence derived from the 20–29 segment of islet amyloid polypeptide, known to self‐assemble into polymorphic fibrils. By tuning the charge and the electrostatic strength, different mesoscopic morphologies are obtained, including nanorods, rope‐like fibrils, and twisted ribbons. Particularly, the addition of positive capping units leads to the formation of uniform rod‐like assemblies, with lengths that can be modulated by the charge number. It is proposed that electrostatic repulsions between N‐terminal positive charges hinder β‐sheet tape twisting, leading to a unique control over the size of these cytocompatible nanorods by protofilament growth frustration. This study reveals the high susceptibility of amyloid formation to subtle chemical modifications and opens to promising strategies to control the final architecture of proteinaceous assemblies from the peptide sequence.  相似文献   

19.
We demonstrate a thin film photodiode structure consisting of multi layers of colloidal quantum dots (QDs) which has application in photovoltaics and photodetection. The CdTe QDs with either positively or negatively charged capping ligands are self-assembled layer-by-layer on an indium tin oxide (ITO) substrate by electrostatic attraction in aqueous solution. A photolithographically patterned photoresist window defines the device active area and an evaporated aluminum (Al) thin film serves as the top electrode. The built-in electric field due to the work function difference between Al and ITO separates photo-excited electron-hole pairs and generates photocurrent. Since the ligands used for QD synthesis are short (less than 0.5 nm), no additional steps of ligand exchange or annealing is needed for enhancing the thin film photoconductivity. Thiol passivation and self-assembly in an inert environment help reduce surface traps, leading to less fermi-level pinning which also improves the device performance.  相似文献   

20.
Currently, there is no standard method for testing the electrostatic properties of pharmaceutical powders. The objective of this study was to develop a method of characterizing the dispersion, charging, and transport properties of fine powder flowing through tubes of different materials. Powders of known composition and size distribution were dispersed pneumatically and transported through a short section of tubing containing spiral baffle inserts of the same material to simulate powder flow in long sections of horizontal and vertical tubes with bends. The test powder was dispersed using ring jet suction and passed through the baffled tube to a sampling chamber, from which the powder cloud was sampled for particle size and electrostatic charge distribution measurement using an Electrical Single Particle Aerodynamic Relaxation Time (E-SPART) analyzer. Experimental data on the tribocharging and transport properties of different powders are presented along with an explanation of the charging mechanisms. Analyses of particle size and electrostatic charge distributions in real time and on a single particle basis using the E-SPART analyzer coupled with surface structure analyses with XPS and UPS showed that: (1) most powders are charged bipolarly with relatively high charge-to-mass ratio (Q/M) values that would have a strong effect on transport and deposition of powders; and (2) surface structures, particularly adsorbates, influence the work function and tribocharging of powder. Different methods, including plasma treatment, with minimal changes or contamination of the bulk properties of the powders are also suggested.

pharmaceutical powders tribocharging dispersion work function charge distributions charge decay plasma treatment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号