首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A crack-free surface can be finished on brittle materials by a specialized but traditional machining technique known as ductile-mode machining. In ductile-mode machining of brittle material, crack propagation is suppressed by selecting a suitable combination of tool and machining parameters leading to the removal of material through plastic deformation enabled by dislocation motion. In ductile-mode machining, the tool–workpiece interaction is of critical significance for the capability of the cutting process to finish a crack-free surface on a brittle material. This interaction is largely dictated by the cutting-edge radius of the tool when the undeformed chip thickness is comparable to the edge radius as is the case of ductile-mode machining. This paper presents the experimental results of ductile-mode milling of tungsten carbide to investigate the effect of cutting-edge radius on certain critical machining characteristics associated with the ductile–brittle transition specific to milling process of brittle material. The experimental results have established that an increase in the cutting-edge radius within a certain range increases the critical feed per edge leading to the improvement of material removal rate in ductile-mode milling. An increasingly negative effective rake angle is desired during milling with larger edge-radiused tool to suppress the crack propagation in the cutting zone to achieve ductile-mode machining. The results also identify the effect of the edge radius on certain other parameters such as critical specific cutting energy, plowing effect and subsurface damage depth to comprehend the ductile–brittle transition phenomenon in ductile-mode milling.  相似文献   

2.
杨光  皮钧  刘中生 《机械工程学报》2017,53(19):100-106
超声辅助切削和切削液的联合使用能减小切削力和降低表面粗糙度,试图说明其机理,目的是为开发精密和超精加工技术打下基础。超声辅助切削和切削液的联合使用,从性质上改变了刀刃施加给工件表面的作用力,包括摩擦力和压力:在无切削液情况下,刀刃切入时,前刀面和后刀面施加给被切削面的摩擦力方向是指向刀刃;在有切削液情况下,刀刃切入时,前刀面和后刀面施加给被切削面的摩擦力方向是背向刀刃。背向刀刃的摩擦力,相对于指向刀刃的摩擦力而言,会导致剪切角增大,等效于更锋利的刀刃所产生的剪切角;切削液的存在使得刀刃施加给工件的力更加集中,等效于圆角半径更小的刀刃所能达到的效果;切削液在刀尖部位的压力分布不利于工件表面产生微裂纹。也就是说,超声辅助切削和切削液的联合使用起到了更锋利即更小圆角半径刀刃所起的效果,称之为非物理锐化。  相似文献   

3.
A theoretical cutting force model for helical end milling with cutter runout is developed using a predictive machining theory, which predicts cutting forces from the input data of workpiece material properties, tool geometry and cutting conditions. In the model, a helical end milling cutter is discretized into a number of slices along the cutter axis to account for the helix angle effect. The cutting action for a tooth segment in the first slice is modelled as oblique cutting with end cutting edge effect and tool nose radius effect, whereas the cutting actions of other slices are modelled as oblique cutting without end cutting edge effect and tool nose radius effect. The influence of cutter runout on chip load is considered based on the true tooth trajectories. The total cutting force is the sum of the forces at all the cutting slices of the cutter. The model is verified with experimental milling tests.  相似文献   

4.
This paper proposes an analytical cutting forces model based on an extension of the Oxley's machining theory (OMT) to high-speed machining of ductile and hard metals. In this model, the materials' behavior was modeled using the Marusich's constitutive equation (MCE). Furthermore, The OMT was modified to be able to capture the effects of the cutting tool edge radius and the burnishing phenomenon by implementing a variable rake angle equation and the Briks criterion, respectively. The predictive model was validated using experimental data obtained during the orthogonal machining of two aluminum alloys (AA6061-T6 and AA7075-T651) and induction-hardened AISI4340 steel (58-60 HRC). The results showed that the predicted and experimental cutting forces were in reasonable agreement for all tested materials. The strain rate constant in the primary shear zone (C0) was found to be significantly sensitive to the cutting conditions and work material, and its effect on the predicted data was highlighted and discussed in depth. On one hand, it was found that AA6061-T6 is less sensitive to the strain rate compared to the AA7075-T651. On the other hand, all tested materials were found to be more sensitive to the strain rate at low cutting speeds and/or cutting feeds.  相似文献   

5.
In the present work, a mechanistic model of cutting forces is developed with a novel approach to arrive at the cutting edge geometry as well as the cutting mechanics. The geometry of cutting elements derived and verified using a virtual tool generated in CAD environment is considered. The cutting and edge force coefficients at every discrete point on the cutting edge of micro-ball end mill are established in a novel way from the basic metal cutting principles and fundamental properties of materials, considering edge radius and material strengthening effects. Further, measured edge radius is used in the model. Full slot micro-ball end milling experiments are conducted on a high-precision high-speed machining center using a 0.4 mm diameter tungsten carbide tool and cutting forces are measured using a high-sensitive piezo-electric dynamometer. It is established that the predicted as well as experimental cutting forces are higher at very low uncut chip thickness in comparison with the cutting edge radius in micro-ball end milling also. Amplitudes of cutting forces and instantaneous values with incremental rotation of the tool are compared with predicted values over two revolutions for validation of proposed model.  相似文献   

6.
M.Es.Abdel Moneim 《Wear》1980,63(2):303-318
A review of orthogonal finish machining is presented. The relations be- tween material flow conditions in the three distinct flow regions in metal cutting are examined: the deformation zone governs chip flow, the tool-chip contact zone is responsible for tool wear and the tool base rubbing zone controls workpiece integrity. In orthogonal machining the initial sharp tool cutting edge is of importance regarding the integrity of surface finish although tool edge forces have been the subject of more investigations. Material flow near the tool edge is considered with respect to the author's own model.  相似文献   

7.
基于实验Inconel718正交切削有限元仿真分析   总被引:1,自引:0,他引:1  
为研究犁削效应和前刀面粘压对Inconel718切削过程的影响.基于正交切削实验建立Inconel718有限元切削模型,模型结果同实验值对比以验证模型可靠性.通过改变刀具圆角半径和负前角参数,提取并比较不同的切削力时域曲线和刀具温度,分析犁削效应和前刀面粘压.研究表明犁削效应提高进给力数值,刀具圆角半径由0变为5μm,Inconel718切削进给力均值提高7%:前刀面粘压提高刀具和切屑温度,有利于切屑分离.但刀具负前角为-20°,切削加工不稳定.  相似文献   

8.
Tool wear monitoring is a popular research topic in the field of ultra-precision machining. However, there appears to have been no research on the monitoring of tool wear in ultra-precision raster milling (UPRM) by using cutting chips. In the present research, monitoring tool wear was firstly conducted in UPRM by using cutting chips. During the cutting process, the fracture wear of the diamond tool is directly imprinted on the cutting chip surface as a group of ‘ridges’. Through inspection of the locations, cross-sectional shape of these ridges by a 3D scanning electron microscope, the virtual cutting edge of the diamond tool under fracture wear is built up. A mathematical model was established to predict the virtual cutting edge with two geometric elements: semi-circle and isosceles triangle used to approximate the cross-sectional shape of ridges. Since the theoretical prediction of cutting edge profile concurs with the inspected one, the proposed tool wear monitoring method is found to be effective.  相似文献   

9.
In this study, a new slip-line field model and its associated hodograph for orthogonal cutting with a rounded-edge worn cutting tool are developed using Dewhurst and Collins's matrix technique. The new model considers the existence of dead metal zone in front of the rounded-edge worn cutting tool. The ploughing force and friction force occurred due to flank wear land, chip up-curl radius, chip thickness, primary shear zone thickness and length of bottom side of the dead metal zone are obtained by solving the model depending on the experimental resultant force data. The effects of flank wear rate, cutting edge radius, uncut chip thickness, cutting speed and rake angle on these outputs are specified.  相似文献   

10.
Micro-end milling is used for manufacturing of complex miniaturized components precisely in wide range of materials. It is important to predict cutting forces accurately as it plays vital role in controlling tool and workpiece deflections as well as tool wear and breakage. The present study attempts to incorporate process characteristics such as edge radius of cutting tool, effective rake and clearance angles, minimum chip thickness, and elastic recovery of work material collectively while predicting cutting forces using mechanistic model. To incorporate these process characteristics effectively, it is proposed to divide cutting zone into two regions: shearing- and ploughing-dominant regions. The methodology estimates cutting forces in each partitioned zone separately and then combines the same to obtain total cutting force at a given cutter rotation angle. The results of proposed model are validated by performing machining experiments over a wide range of cutting conditions. The paper also highlights the importance of incorporating elastic recovery of work material and effective rake and clearance angle while predicting cutting forces. It has been observed that the proposed methodology predicts the magnitude and profile of cutting forces accurately for micro-end milling operation.  相似文献   

11.
This paper presents an analytical method based on the unequal division shear-zone model to study the machining predictive theory. The proposed model only requires workpiece material properties and cutting conditions to predict the cutting forces during the orthogonal cutting process. In the shear zone, the material constitutive relationship is described by Johnson?CCook model, and the material characteristics such as strain rate sensitivity, strain hardening, and thermal softening are considered. The chip formation is supposed to occur mainly by shearing within the primary shear zone. The governing equations of chip flow through the primary shear zone are established by introducing a piecewise power law distribution assumption of the shear strain rate. The cutting forces are calculated for different machining conditions and flow stress data. Prediction results were compared with the orthogonal cutting test data from the available literature and found in reasonable agreement. In addition, an analysis of the deviation from experimental data for the proposed model is performed, the effects of cutting parameters and tool geometry were investigated.  相似文献   

12.
Micro milling, as a versatile micro machining process, is kinematically similar to conventional milling; however, it is significantly different from conventional milling with respect to chip formation mechanisms and uncut chip thickness modelling, due to the comparable size of the edge radius to the chip thickness, and the small per-tooth feeding. Considering tool runout and dynamic displacement between the tool and the workpiece, the contour of the workpiece left by previous tool paths is typically in a wavy form, and the wavy surface provides a feedback mechanism to cutting force generation because the instantaneous uncut chip thickness changes with both the vibration during the current tool path and the surface left by the previous tool paths. In this study, a more accurate uncut chip thickness model was established including the precise trochoidal trajectory of the cutting edge, tool runout and dynamic modulation caused by the machine tool system vibration. The dynamic regenerative effect is taken into account by considering the influence of all the previous cutting trajectories using numerical iteration; thus, the multiple time delays (MTD) are considered in this model. It is found that transient separation of the tool-workpiece occurring at a low feed per tooth, caused by MTD and the existing cutting force models, is no longer applicable when transient tool-workpiece separation occurs. Based on the proposed uncut chip thickness model, an improved cutting force model of micro milling is developed by full consideration of the ploughing effect and elastic recovery of the workpiece material. The proposed cutting force model is verified by micro end milling experiments, and the results show that the proposed model is capable of producing more accurate cutting force prediction than other existing models, particularly at small feed per tooth.  相似文献   

13.
Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.  相似文献   

14.
The study aims at developing a predictive analytical force model for the micro end-milling operation taking into account the material strengthening as well as the edge radius effects that come into play at the micro level. The mechanistic models for macro end-milling process have been extensively reported in literature and such models predominantly use milling force coefficients which are empirically determined from end-milling experiments. The proposed model for micro end-milling is based on determination of milling force coefficients from fundamental oblique cutting approach. The edge radius effect has been accounted by analyzing the rubbing action similar to the rolling of a cylinder over work surface. Johnson-Cook material model has been modified based on the strain gradient plasticity theory incorporating the increase in material strength with decreasing uncut chip thickness. From the micro orthogonal cutting experiments, a good agreement between the experimental and predicted shear strength values is observed. The force model is validated against measured forces in end-milling experiments carried out on the KERN Evo 5 axis micro machining center. The feed and lateral forces are predicted within 10% deviation on an average.  相似文献   

15.
The mechanism of ductile chip formation in cutting of brittle materials   总被引:1,自引:1,他引:1  
A theoretical analysis for the mechanism of ductile chip formation in the cutting of brittle materials is presented in this paper. The coexisting crack propagation and dislocation in the chip formation zone in the cutting of ductile materials are examined based on an analysis of the geometry and forces in the cutting region, both on Taylor’s dislocation hardening theory and the strain gradient plasticity theory. It was found that the ductile chip formation was a result of large compressive stress and shear stress in the chip formation zone, which shields the growth of pre-existing flaws by suppressing the stress intensity factor K I . Additionally, ductile chip formation in the cutting of brittle materials can result from the enhancement of material yield strength in the chip formation zone. The large compressive stress can be generated in the chip formation zone with two conditions. The first condition is associated with a small, undeformed chip thickness, while the second is related to the undeformed chip thickness being smaller than the radius of the tool cutting edge. The analysis also shows that the thrust force F t is much larger than the cutting force F c . This indicates that large compressive stress is generated in the chip formation zone. This also confirms that the ductile chip formation is a result of large compressive stress in the chip formation zone, which shields the growth of pre-existing flaws in the material by suppressing the stress intensity factor K I . The enhancement of material yield strength can be provided by dislocation hardening and strain gradient at the mesoscale, such that the workpiece material can undertake the large cutting stresses in the chip formation zone without fracture. Experiments for ductile cutting of tungsten carbide are conducted. The results show that ductile chip formation can be achieved as the undeformed chip thickness is small enough, as well as the undeformed chip thickness is smaller than the tool cutting edge radius.  相似文献   

16.
A modelling of oblique cutting for viscoplastic materials is presented. The thermomechanical properties and the inertia effects are accounted for to describe the material flow in the primary shear zone. At the tool–chip interface, a temperature-dependent friction law is introduced to take account of the extreme conditions of pressure, velocities and temperature encountered during machining. The chip flow angle is calculated by assuming that the friction force is collinear to the chip flow direction on the tool rake face. Due to the temperature dependence of the friction law at the tool–chip interface, the chip flow angle predicted by the model, is affected by the cutting speed, the undeformed chip thickness, the normal rake angle, the edge inclination angle and the thermomechanical behavior of the work material. This dependence and the trends predicted by the present approach are confirmed by experimental observations. Effects of cutting conditions on the cutting forces are also presented and compared to experiments.  相似文献   

17.
The tool edge radius significantly affects material deformation and flow, tool?Cchip friction, and a variety of machining performance measures (such as the cutting forces and tool wear) in mechanical micro/meso-scale machining. The tool edge-related research, either theoretically or experimentally, has been only focused in machining cases in which no built-up edge (BUE) is generated. To close this research gap, a comparative study of sharp and round-edge tools in orthogonal machining with BUE formation is conducted, including both experimental investigations and theoretical modeling. The experimental results show that the variations of the cutting forces are more stable in machining with a sharp tool than those in machining with a round-edge tool. A round-edge tool produces higher vibration magnitudes than does a sharp tool. The cutting vibrations do not necessarily have the same varying pattern as that of the cutting forces in machining with either a sharp tool or a round-edge tool. A neural network-based theoretical model is developed to predict three distinct regions of BUE formation (namely BUE Initiation Region, Steady BUE Region, and Unsteady BUE Region) in machining with a round-edge tool. The developed neural network model has been proven valid using a separate set of cutting experiments under different cutting conditions from those used for network training and testing.  相似文献   

18.
Geometry of cutting edge has great influence on performance and reliability of modern precision cutting tools. In this study, two-dimensional finite element model of orthogonal cutting of Fe–Cr–Ni stainless steel has been built to optimize the geometric parameters of chamfered edge. A method to measure the chip curl radius has been proposed. The effect of cutting edge geometric parameters on tool stress and chip curl radius has been analyzed. Then, the chamfered edge parameters have been optimized based on numerical simulation results. It finds that, keeping the equal material removal rate, the optimal geometric parameters of chamfered edge for rough machining Fe–Cr–Ni stainless steel are that the rake angle is from 16° to 17°, and the chamfer length is from 60 to 70 μm. Small (large) rake angle combined with small (large) chamfer length is more reasonable to reduce the tool stress. When the length of land is approximately equal to undeformed chip thickness and the rake angle is larger than 15°, the chip curl radius is minimal. The groove type with large radio of width to depth should be used in the chip breaking based on the optimization results.  相似文献   

19.
基于材料塑性滑移理论与刀具刃前材料流动状态分析,提出了一种考虑倒棱刀具负前角切削过程下的材料滞流区(死区)和预剪区的修正滑移线场模型,并给出了材料流动剪切应力和刃前切削几何参数的迭代求解方法,揭示了倒棱刃口几何形状与滑移线场几何参数之间的变化规律。将此模型应用于倒棱刀具切削过程,得到了适用于倒棱刀具正交切削力的预测方法。采用有限元仿真和切削试验相结合的方法对所提出的滑移线场模型和切削力预测方法分别进行了验证,模型预测结果与仿真结果和试验测量结果对比误差均在10%以内。研究结果为研究倒棱几何形状对工件材料流动特性和刀具切削性能的影响提供了参考。  相似文献   

20.
The applications of titanium alloys are increasingly common at marine, aerospace, bio-medical and precision engineering due to its high strength to weight ratio and high temperature-withstanding properties. However, whilst machining the titanium alloys using the solid carbide tools, even with application of high pressure coolant, reduced tool life was widely reported. The generation of high temperatures at the tool–work interface causes adhesion of work material on the cutting edges, and hence, shorter tool life was reported. In order to reduce the high tool–work interface temperature-positive rake angle, higher primary relief and higher secondary relief were configured on the ball nose endmill cutting edges. Despite of careful consideration of tool geometry, after an initial working period, the growth of flank wear accelerates the high cutting forces followed by work material adhesion on the cutting edges. Hence, it is important to blend the strength, sharpness, geometry and surface integrity on the cutting edges so that the ball nose endmill would exhibit an extended tool life. This paper illustrates the effect of ball nose endmill geometry on high speed machining of Ti6Al4V. Three different ball nose endmill geometries were configured, and high speed machining experiments were conducted to study the influence of cutting tool geometry on the metal cutting mechanism of Ti-6Al-4V alloy. The high speed machining results predominantly emphasize the significance of cutting edge features such as K-land, rake angle and cutting edge radius. The ball nose endmills featured with a short negative rake angle of value ?5° for 0.05~0.06 mm, i.e. K-land followed by positive rake angle of value 8°, has produced lower cutting forces signatures for Ti-6Al-4V alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号