首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last years, a better comprehension of hydraulic cylinder performance is observed to be a prime objective of many owing to demanding applications. By observing these hydraulic cylinder applications, we see currently proposed models and design criteria do not take into account real factors, and further there are misalignment and boundary conditions in the end supports, mechanism interaction, dust, clearance and imperfections. Since these boundary conditions can develop progressive moments, the ideal simple supported bi-articulated configuration of the actuator is no longer valid, and virtual clamped configuration appears with friction moments that substantially modify the buckling analysis. In a previous work, misalignment effects were studied and discussed. In the present work a study of the influence of friction moments when misalignment effects are deliberately left aside is carried out. In order to separate these two phenomena (friction and misalignment) boundary conditions in a column are analysed. From this analysis, a theoretical and experimental work has been carried out for columns and an actuator characterizing the critical factors that cause the collapse. The aim of this paper is to describe the behaviour of actuators under load capacity with experimental validation when friction moment is taken into account and becomes an unknown variable. Experimental and theoretical results point out the importance and influence of the friction effects in columns and hydraulic cylinders. Then, it is recommended that knowledge of the hydraulic cylinder application to predict its load capacity owing to that direct extrapolation of results from current theories and criterions could lead to incorrect estimations.  相似文献   

2.
Available analytical results and experiments on the structural behavior of constrained horizontal cylinders subjected to axial compression, torsion, and gravitational loads are reviewed. Such configurations are of interest to the oil-drilling field and provide static design expressions for steel tubulars. The buckling problem is similar to restrained railroad tracks and submerged/underwater pipelines under thermal expansion. Due to outer cylinder constraint and gravitational loads, analysis has shown that long cylinders initiate buckling at loads significantly higher than classical Euler buckling loads. For these constrained long cylinders, buckling initiates in a sinusoidal mode that snakes along the lower surface of the constraining cylinder. Classic analytical expressions hold that as the axial load increases, the cylinder achieves an overall helically buckled state in which the buckled cylinder forms a helix spiraling around the inner surface of the constraining cylinder. Torsion is shown to have little effect on either buckling load but controls the sense/direction of the helical buckling. Little experimental data exist on constrained cylinder buckling, and it is unclear how the initiating sinusoidal mode transitions to the helical mode. Implications of the buckling progression for composite cylinder applications are described including the finding that composites perform poorly relative to steel on the metric of buckling due to lower density and axial stiffness; composites perform well on the metric of lock-up length when friction is considered. Based on this review and findings for composite cylinders, recommendations are made for further work.  相似文献   

3.
The plastic buckling and collapse of long cylinders under combined internal pressure and axial compression was investigated through a combination of experiments and analysis. Stainless-steel cylinders with diameter-to-thickness values of 28.3 and 39.8 were compressed to failure at fixed values of internal pressure up to values 75% of the yield pressure. The first effect of internal pressure is a lowering of the axial stress–strain response. In addition, at some plastic strain level, the cylinder develops uniform axisymmetric wrinkling. Under continued compression, the wrinkles grow stably, gradually reducing the axial rigidity of the structure and eventually lead to a limit load instability. All pressurized cylinders remained axisymmetric until the end of the test past the limit load.The critical stress and wavelength were established using classical plastic bifurcation theory based on the deformation theory of plasticity. The evolution of wrinkling, and the resultant limit state, were established by modeling a periodic domain that is one half of the critical wavelength long. The domain was assigned an initial imperfection corresponding to the axisymmetric buckling mode calculated through the bifurcation check. The inelastic material behavior was modeled through the flow theory of plasticity with isotropic hardening. The variations of the axial response and of the limit strain with pressure observed in the experiments were reproduced well by the model. Inclusion of Hill-type anisotropic yielding in all constitutive models was required for good agreement between predictions and experiments.  相似文献   

4.
初始挠度及中间弹性支撑对压杆稳定的影响分析   总被引:1,自引:0,他引:1  
张晓霞  钟文生  姚远 《机械》2011,38(6):1-4
实际工程结构中的细长杆受压时,当存在初始挠度及中间弹性支撑时,不能用经典的欧拉公式计算杆件的屈曲临界载荷.利用有限元软件ANSYS对实际工程结构进行非线性屈曲分析,能够考虑到杆件的初姑挠度以及中间弹性支撑对临界失稳载荷的影响.计算结果表明:机车径向转向架耦合杆初妊挠度为10 mm时,对应的临界失稳载荷相对欧拉公式计算结...  相似文献   

5.
Although the performance and reliability of pneumatic cylinders depend to a great extent on the friction generated at the seals, the friction characteristics have not been widely studied. Both the literature and manufacturers' catalogues rarely discuss the friction characteristics of pneumatic cylinders, and the lack of friction models limits the design, optimisation, and analysis of pneumatic cylinder systems. In seeking to improve the characteristics of pneumatic cylinders and to clarify the friction phenomenon, this paper describes friction force measurement tests carried out in pneumatic cylinders of six different diameters, from 32 to 100 mm. An experimental apparatus was designed to assess the effect of a broad range of operating conditions, where the velocity and pressure of the cylinder chambers are controlled independently. Measurements of friction force are shown for velocities of up to 0.5 m/s and pressures of up to 0.8 MPa. The data obtained will be useful for developing a suitable friction model, and the experimental apparatus will allow study of the effects on the friction force of different types of seal, lubricant, and cylinder barrel.  相似文献   

6.
由于制造误差、偏斜力矩及弹性变形等原因会导致轴颈在轴承中倾斜,使轴承气膜厚度和压力分布发生变化,会对轴承的工作性能产生影响。为研究轴颈偏斜对轴承性能的影响,通过有限元摄动法求解雷诺方程,研究轴颈偏斜角度和偏斜距离对人字槽气体轴承气膜厚度、压力场、静态和动态特性的影响,并分析轴颈倾斜对人字槽径向轴承临界质量等参数的影响规律。结果表明:轴颈偏斜距离变化对轴承静态和动态性能影响较大,偏斜角度对轴承性能影响较小;随着偏斜距离增大,量纲一承载力和临界质量均大幅减小、量纲一摩擦力矩呈现小幅下降趋势。  相似文献   

7.
The exact-constraint design principle is commonly applied to flexure mechanisms to ensure deterministic behavior, but at the cost of reduced robustness, support stiffness, load capacity and usually an increased complexity of design. To explore the potential benefit of overconstrained design in flexure mechanisms, this paper investigates an elementary two-flexure cross-hinge with a single overconstraint as a case study. The stiffness effects of inadvertent stress due to misalignment are investigated experimentally, numerically and analytically.A measurement set-up with controllable misalignment has been designed. Measurements show that the first natural frequency of the cross-hinge decreases strongly with misalignment, suggesting that the actuation stiffness decreases due to the misalignment stress, and ultimately vanishes due to bifurcation buckling at a critical misalignment of the order of 0.1 mm for the mechanism at hand.Simulations with a detailed numerical model support the measurements and expose some additional factors, such as warping and shuttle compliance, which influence the system behavior. Importantly, they also show that the compliance in the support directions of the mechanism increases strongly at the critical misalignment, demonstrating that the mechanism no longer functions at the critical misalignment.An extensive analytical buckling analysis shows how the stress due to misalignment poses a functional operation limit on the overconstrained mechanism in terms of bifurcation buckling. The analysis serves to corroborate the numerical predictions. An expression is derived for the critical misalignment force and displacement as a function of the geometry and material of general cross-hinge mechanism designs.  相似文献   

8.
烛式油气悬架兼有主销的作用,所以通常具有2°~5°的安装内倾角,内倾角会造成油气缸承受横向力的作用,从而增大缸筒和活塞之间的摩擦力.摩擦力增大会影响油气缸的减振性和车辆乘坐舒适性,严重时会造成油气缸"摩擦锁死"现象,使油气缸失去减振能力.以某矿用自卸车的烛式油气悬架为研究对象,通过理论分析了缸筒和活塞之间摩擦力的影响因...  相似文献   

9.
徐超  张铎 《机械强度》2007,29(5):806-810
内压作用下发动机反向封头的稳定性是设计中的考虑重点.采用轴对称有限元方法对不同设计参数的等厚度和变厚度两大类反向封头进行稳定性研究,模型考虑封头开口加强环及封头与圆柱段连接处的局部加强影响.参数化研究椭球比、壁厚对封头临界屈曲载荷的影响.研究结果表明,等厚度反向封头的外形和变厚度的壁厚对结构临界屈曲载荷的影响十分敏感,在最小厚度一定的情况下,椭球比为1.413的变厚度封头是最小质量设计.另外文中给出可供工程实际设计参考的图表及曲线.  相似文献   

10.
Conical–cylindrical bearings are used in electrohydraulic servo systems to improve the control accuracy, eliminate the static friction and increase the normal load‐carrying capacity. A non‐Newtonian rheological model to investigate theoretically the effects of lubricant additives on the performance of misaligned conical–cylindrical bearings is proposed in this study. In this model, the non‐Newtonian behaviour resulting from blending the lubricant with polymer additives is simulated by Stokes couple stress fluid model. The formed boundary layer at the bearing surface is described through the use of a hypothetical porous medium layer that adheres to the bearing surface. The Brinkman‐extended Darcy equations are utilised to model the flow in the porous region. A stress jump boundary condition is applied at the porous media/fluid film interface. The misalignment of the cylinder rod is also considered. A modified form of the Reynolds equation is derived and solved numerically using a finite difference scheme. The effects of bearing geometry and non‐Newtonian behaviour of the lubricant on the steady‐state performance characteristics such as pressure distribution, load‐carrying capacity and coefficient of friction are presented and discussed. The results showed that lubricant additives significantly increase the load‐carrying capacity and reduce the coefficient of friction as compared to the Newtonian lubricants. Furthermore, the misalignment of the piston rod has significant effects on the performance of conical–cylindrical bearings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
针对各种机械装置使用最普遍、最基本的轴-滑动轴承摩擦副系统,设计研制了专用试验装置,对轴受载荷作用产生弯曲变形,导致轴颈在轴承孔中倾斜时滑动轴承的润滑性能进行了试验研究。结果表明,在轴-滑动轴承摩擦副系统中,轴受载荷作用产生变形将导致轴颈在轴承孔中倾斜;轴变形导致轴颈倾斜时,滑动轴承的油膜压力、油膜厚度和温度的分布状况及数值发生了明显变化。轴受载越大,其变形产生的轴颈倾斜越严重,对滑动轴承润滑性能的影响越明显;轴承半径间隙与轴承宽度比值越小,轴变形产生的轴颈倾斜对轴承油膜压力、油膜厚度和温度的数值及分布的影响越大。因此,滑动轴承设计中应该考虑轴受载荷作用产生的变形导致轴颈倾斜的影响,对于重要的机械设备,尤其应当考虑这种影响。  相似文献   

12.
J. Heinrichs  S. Jacobson 《Wear》2009,267(12):2278-2524
Cold forming of aluminium is a group of very efficient methods, which are successfully used in a number of industrial applications. Two of the major factors limiting the tool life and restricting the shapes and sizes possible to produce, are galling, i.e. transfer of work material to the tool surface, and high stresses occurring when forming complex shapes. Both phenomena are closely related to the friction and adhesion in the tool to workpiece interface.The present paper investigates the influence of several surface parameters to the tendency to galling. This is done by forming aluminium using tool steel in a geometrically simplified lab test. The test scans over a wide load interval while monitoring the coefficient of friction. The corresponding transfer of work material to the tool surface is studied in the SEM after testing. The test is focused on the initial tool contact and also on the number of contacts before a critical friction level is reached.The test set-up comprises two crossed cylinders in sliding contact, one made of tool steel and one of work material. Three commercial tool materials were included, each prepared to two surface finishes. The aluminium workpiece cylinders of AA6082 were prepared by two different pre-treatments, solid lubrication followed by soft annealing and pickling, respectively.The respective importance of the tool material, preparation of the tool surface finish and the aluminium surface pre-treatment are compared with respect to initial galling tendencies and friction stability. The practical implications for real forming applications are discussed.  相似文献   

13.
椭圆度对外压圆筒体屈曲临界载荷影响的初步分析   总被引:3,自引:0,他引:3  
刘宏臣  胡津康  王泽军 《压力容器》2006,23(6):27-29,51
工程结构屈曲的有限元分析方法通常包括特征值分析、几何非线性分析和几何/材料双非线性分析三种方法。本文通过算例分析和对比,认为双非线性分析法可得出更合理的结果。系列计算表明,外压圆筒体屈曲临界压力值会随简体椭圆度的增加而明显降低。  相似文献   

14.
对液压缸静压支承抗偏载特性进行了研究,分析静压支承液压缸的润滑性能与泄漏特性,利用FLUENT软件对油膜的压力场特性进行仿真分析,分析液压缸静压支承的抗偏载特性;对静压支承导向套的矩形和工字形油腔的油膜特性进行分析对比,研究液压缸运动速度、偏心量、入口流量与静压支承导向套的承载力和润滑性能之间的关系;搭建实验台,利用电涡流传感器测量活塞杆的偏心距离,对静压支承液压缸与无静压支承液压缸的抗偏载性能进行对比。  相似文献   

15.
In hydrodynamic lubrication theory, the oil film thickness build‐up increases with increasing sliding speed or oil viscosity, and the viscous resistance or shear stress also increases, both without limit. The entraining force forming the oil film is given by the moving surfaces, or by the adhesive force of the oil molecules on the rubbing surfaces and the interaction force between them. Therefore, the maximum friction force and maximum oil film thickness will be limited by the operating conditions, such as oil properties, rubbing materials, sliding speed, and load. In this study, friction tests were conducted using a plate‐on‐cylinder sliding contact apparatus. It was found that a critical shear stress existed, above which the friction force and oil thickness decreased from theoretical values. Slip in an oil film seems to occur when the theoretical shear stress exceeds the critical value of the oil, according to test conditions. The occurrence of slip in an oil film is responsible for the reduction in the oil film and friction force from theoretical values, leading to the lower‐viscosity components of the oil selectively passing through the conjunction zone.  相似文献   

16.
The lateral compression of aluminium and clad tubes owing to a large deformation is examined by an incremental elasto-plastic finite-element method based on an updated Lagrangian formulation in which a sliding-sticking friction mode is specially considered. It is mainly expected to predict the buckling process and load–deflection curves for energy dissipation capacity during the design stage, before trials. The high non-linearity of the process due to geometric changes, the inelastic constitutive behavior, and the deformation-dependent boundary conditions are taken into account in an incremental manner. A static explicit approach to the solution is applied, tangent stiffness matrix equation is solved without iteration and the rmin technique is employed to limit the step size to linear relation. The simulated load–deflection curve agrees with a published experimental result. The predicted geometries of the compressed tube clearly demonstrate the processes of the formation of buckling until unloading. The effects of various parameters of the process, such as elastic modulus, strain hardening exponent, tube thickness, friction coefficient and configurations of the clad tube, on the occurrence of buckling of tube are discussed and interpreted in simulation. The present work may be expected to improve the understanding of the buckling mechanism of lateral compression.  相似文献   

17.
基于动网格的液压缸双向流固耦合分析   总被引:1,自引:0,他引:1  
针对液压缸偏载引起的结构磨损及液压油泄漏等问题,基于动网格方法,开展了偏载工况下液压缸的双向流固耦合分析。研究表明:在自锁半径内,随偏载量增大,柱塞与导向套间的侧推力、柱塞最大侧倾位移和导向套应力均增大,偏载量超过自锁半径时,三者都有所减小,但均比稳态分析结果大,表明液压油对柱塞侧倾有“加剧”作用。因此,在液压缸偏载分析设计中,建议采用流固耦合方法,或适当增大稳态分析结果的安全系数。  相似文献   

18.
为提高摩擦副材料极限PV值以避免启停等极端条件下润滑表面的剧烈磨损失效,提高零件的可靠性和使用寿命,开展油润滑微孔SiC表面极限PV值试验研究。考虑空化效应影响,分别对光滑表面、圆孔表面和椭圆微孔表面进行润滑状态分析,获得微孔试件表面的压力分布;对摩擦因数、温度和表面磨损形貌进行试验测量,获得不同载荷工况下微孔表面磨损失效的临界转速和极限PV值的变化规律。结果表明:微孔表面呈现出提高SiC摩擦副极限PV值的趋势,平均极限PV值最大提高70%以上,其中椭圆微孔最大可使摩擦副的极限PV值提高2倍以上;微孔表面的极限PV值随载荷工况的变化呈现明显的波动和不确定性。边界润滑条件下,表面微孔可能出现减摩效果,也可能出现增摩现象,试验中圆形微孔可使摩擦副的极限PV值下降超过60%。  相似文献   

19.
The hydraulic servo cylinders with conical–cylindrical hydrobearing can obtain a high normal load carrying capacity at the shoulder length ratio ns=0.8, and also avoid cylinder rod in collision with the sharp edge of conical surface. However, the effects of eccentricity and misalignment must be considered since aligning the centers of the hydraulic servo actuator with the applied mechanical load is concerned. In this study, eccentricity ratio is varied between 0 and 0.6 with misalignment factor up to 0.6 and 0.05 along the horizontal and vertical directions, respectively. Thermal effects that include isothermal, adiabatic and thermohydrodynamic boundary conditions on the bearing performance, such as pressure distribution, normal load carrying capacity and the frictional coefficient, are all examined herein.  相似文献   

20.
摩擦热负荷与磨损是湿式离合器摩擦副损伤失效的2个重要因素,两者与工况参数都有着较为复杂的映射关系且相互作用.基于有限元模拟和离合器台架试验,运用3σ准则计算摩擦元件屈曲变形的临界径向温差,利用实验数据拟合与插值得出临界磨损率;通过BP神经网络训练得出双参数耦合作用的损伤阈值模型,并通过试验验证模型的有效性和准确性.研究...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号