首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 0 毫秒
1.
A postbuckling analysis is presented for a shear deformable cross-ply laminated cylindrical shell of finite length subjected to combined loading of external pressure and axial compression. The governing equations are based on Reddy's higher order shear deformation shell theory with von Kármán–Donnell type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of shear deformable laminated cylindrical shells under combined loading cases. A singular perturbation technique is employed to determine interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, unstiffened or stiffened, moderately thick, antisymmetric and symmetric cross-ply laminated cylindrical shells for different values of load-proportional parameters.  相似文献   

2.
A postbuckling analysis is presented for a cross-ply laminated cylindrical shell with piezoelectric actuators subjected to the combined action of mechanical, electric and thermal loads. The temperature field considered is assumed to be a uniform distribution over the shell surface and through the shell thickness and the electric field is assumed to be the transverse component Ez only. The material properties are assumed to be independent of the temperature and the electric field. The governing equations are based on the classical shell theory with a von Kármán–Donnell-type of kinematic nonlinearity. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of hybrid laminated cylindrical shells. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, cross-ply laminated cylindrical thin shells with fully covered or embedded piezoelectric actuators subjected to combined mechanical loading of external pressure and axial compression, and under different sets of thermal and electric loading conditions. The effects played by temperature rise, applied voltage, shell geometric parameter, stacking sequence, as well as initial geometric imperfections are studied.  相似文献   

3.
An improved third order shear deformation theory is employed to investigate thermal buckling and vibration of the functionally graded beams. A power law distribution is used to describe the variation of volume fraction of material compositions. The functionally graded material properties are assumed to vary smoothly and continuously across the thickness of the beams. The Ritz method is adopted to solve the eigenvalue problems that are associated with thermal buckling and vibration in various types of immovable boundary conditions. The parametric study covered in this paper includes the effects of material composition, temperature-dependent material properties, and slenderness ratio.  相似文献   

4.
A postbuckling analysis is presented for a stiffened laminated cylindrical shell of finite length subjected to combined loading of external pressure and a uniform temperature rise. The formulation is based on a boundary layer theory of shell buckling which includes the effects of nonlinear prebuckling deformations, nonlinear large deflections in the postbuckling range and initial geometrical imperfections of the shell. The “smeared stiffener” approach is adopted for the stiffeners. The analysis uses a singular perturbation technique to determine the interactive buckling loads and the postbuckling equilibrium paths. Numerical examples are presented that relate to the performance of perfect and imperfect, stiffened and unstiffened cross-ply laminated cylindrical shells. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

5.
Only static buckling of the hybrid functionally graded material (FGM) cylindrical shells has been investigated so far. In the present paper, dynamic buckling of imperfect FGM cylindrical shells with integrated surface-bonded sensor and actuator layers subjected to some complex combinations of thermo-electro-mechanical loads is investigated. The general form of Green's strain tensor in curvilinear coordinates and a high-order shell theory proposed earlier by the author are used. The complicated nonlinear governing equations are solved using the finite-element method. Buckling load is detected by a modified Budiansky's criterion proposed earlier by the author. Effects of temperature dependency of material properties, volume fraction index, load combination, and initial geometric imperfections on thermo-electro-mechanical post-buckling behavior are evaluated. Results reveal that the volume fraction index, temperature gradient, layer sequence, and the adaptive feedback control somewhat may affect the buckling load.  相似文献   

6.
Postbuckling analysis is presented for a simply supported, shear deformable laminated plate subjected to biaxial compression combined with uniform lateral pressure and resting on an elastic foundation. The lateral pressure is first converted into an initial deflection and the initial geometrical imperfection of the plate is also taken into account. The formulations are based on the Reddy's higher-order shear deformation plate theory, and including the plate-foundation interaction. The analysis uses a perturbation technique to determine the buckling loads and the postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, antisymmetrically angle-ply and symmetrically cross-ply laminated plates under combined loading and resting on Pasternak-type or softening nonlinear elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The effects played by foundation stiffness, transverse shear deformation, plate aspect ratio, total number of plies, fiber orientation, the biaxial load ratio and initial lateral pressure are studied.  相似文献   

7.
Based on the nonlinear large deflection theory of cylindrical shells as well as the Donnell assumptions, this paper presents nonlinear buckling and postbuckling analyses for axially compressed functionally graded cylindrical shells by using the Ritz energy method and the nonlinear strain-displacement relations of large deformation. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of constituent materials. Meanwhile, by taking into account the temperature-dependent material properties, various effects of external thermal environment are also investigated. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on nonlinear buckling and postbuckling behaviors. There is a mode-jumping observed after buckling. The present theoretical results are verified by those in the literature.  相似文献   

8.
A postbuckling analysis is presented for a three-dimensional (3D) braided composite cylindrical shell of finite length subjected to combined loading of external pressure and axial compression in thermal environments. Based on a micro–macro-mechanical model, a 3D braided composite may be a cell system and the geometry of each cell is highly dependent on its position in the cross-section of the cylindrical shell. The material properties of epoxy are expressed as a linear function of temperature. The governing equations are based on a higher order shear deformation shell theory with a von Kármán–Donnell-type kinematic nonlinearity and includes thermal effects. A singular perturbation technique is employed to determine interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, braided composite cylindrical shells with different values of shell geometric parameter and of fiber volume fraction under combined loading conditions. The results show that the shell has lower buckling loads and postbuckling paths when the temperature-dependent properties are taken into account. The effects of temperature rise, fiber volume fraction, shell geometric parameter, load-proportional parameter, as well as initial geometric imperfections are studied.  相似文献   

9.
An exact solution is presented for the nonlinear cylindrical bending and postbuckling of shear deformable functionally graded plates in this paper. A simple power law function and the Mori–Tanaka scheme are used to model the through-the-thickness continuous gradual variation of the material properties. The von Karman nonlinear strains are used and then the nonlinear equilibrium equations and the relevant boundary conditions are obtained using Hamilton's principle. The Navier equations are reduced to a linear ordinary differential equation for transverse deflection with nonlinear boundary conditions, which can be solved by exact methods. Finally, by solving some numeral examples for simply supported plates, the effects of volume fraction index and length-to-thickness ratio are studied. It is shown that there is no bifurcation point for simply supported functionally graded plates under compression. The behavior of near-boundary areas predicted by the shear deformation theory and the classical theory is remarkably different.  相似文献   

10.
Based on the three-dimensional fundamental equations of anisotropic elasticity, a state equation with variable coefficients is derived in a unified matrix form. The free vibration of simply supported, fluid-filled cylindrically orthotropic functionally graded cylindrical shells with arbitrary thickness is then investigated. A laminate approximate model is employed which is suitable for an arbitrary variation of material constants along the radial direction. Numerical examples are presented and compared with existing results. The effects of related parameters on natural frequencies are discussed finally.  相似文献   

11.
In the present work, study of the vibration of thin cylindrical shells with ring supports made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. Effects of boundary conditions and ring support on the natural frequencies of the FGM cylindrical shell are studied. The cylindrical shells have ring supports which are arbitrarily placed along the shell and which imposed a zero lateral deflection. The study is carried out using different shear deformation shell theories. The analysis is carried out using Hamilton’s principle. The governing equations of motion of a FGM cylindrical shells are derived based on various shear deformation theories. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature. This paper was recommended for publication in revised form by Associate Editor Eung-Soo Shin M. M. Najafizadeh received his BS degree in 1995 from Azad University (Arak) and the Ms Degree in 1997 from Azad University (Arak), and his Ph.D. degree in 2003 from Science and Research Branch Islamic Azad University (Tehran, Iran), all in mechanical Engineering. He is member of faculty in Islamic Azad University (Arak) since 1998. He teaches courses in the areas of dynamics, theory of plates and shells and finite element method. He has published more than 20 articles in journals and conference proceeding. Mohammad Reza Isvandzibaei received his Ms Degree from Azad University (Arak), and now he is the student of Ph.D. in university of Pune, (India) all in mechanical Engineering. He is member of faculty in Islamic Azad University (Andimeshk).  相似文献   

12.
The paper presents discussion of a new planar problem of contact interaction between a rigid heat-conductive die of circular cross section and an elastic layer. The apparatus of integral transformation is used to obtain a precise solution of the nonstationary equations of heat conductivity for the layer and the cylindrical die. This method makes it possible to reduce the formulated problem to a system of integral equations with time-variable limits of integration; the structure of the equations is governed by the type of thermophysical conditions on the interaction surface. An algorithm is advanced for solving this type of integral equation; the variations in time of the contact pressure and the interaction area boundaries are explored. Thus, it is possible to make the problem’s mathematical formulation closer to the real distribution of thermoelastic stresses and to estimate more accurately the effect of temperature fields on the value and pattern of the contact-pressure distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号