首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The stress fields induced by a dislocation and its image dislocations around a narrow elliptic void are formulated. Based on the solution, the stress distribution and effective stress intensity factor of a blunt (elliptic) crack were calculated under mode I constant loading. The results show that a dislocation-free zone (DFZ) is formed after dislocation emission. There exists a second stress peak in the DFZ except a stress peak at the blunt crack tip. With an increase in the applied stress intensity factor Kla or the friction stress T, of the material, the DFZ size and the peak stress at the crack tip decrease, but the peak stress in the DFZ and the effective stress intensity factor Klf presiding at the crack tip increase. Because of dislocation shielding effects, shielding ratio Kla/Klf increases with increasing Kla, but it decreases with increasing Tf.  相似文献   

2.
By simulating edge dislocation emissions from a mode I crack tip along multiple inclined slip planes, the plastic zone and dislocation-free zone around the crack tip are obtained. It is found that the shape of the mode I plastic zone consists of two leaning forward loops which is better agreement with experimental observations. Except at the crack tip there are also stress peaks in front of the crack tip. A formula of the maximum peak stress as a function of the applied stress intensity factor and the friction stress has been regressed.  相似文献   

3.
Anti-plane punch-through shear test and anti-planefour-point bending test are used to study the crack initiation and propagation under anti-plane shear (Mode Ⅲ) loading. The tensile and shear stresses at the crack tip are calculated by finite element method. The results show that under Mode Ⅲ loading the maximum principal stress σ1 at crack tip is smaller or a little larger than the maximum shear stress τmax. Since the tensile strength of brittle rock is much lower than its shear strength, σ1 is easy to reach its critical value before τmax reaches its critical value and thus results in Mode I fracture. The fracture trajectory is helicoid and the normal direction of tangential plane with the fractured helicoid is along the predicted direction of the maximum principal stress at the notch tip. It is further proved that Mode Ⅰ instead of Mode Ⅲ fracture occurs in brittle rock under Mode Ⅲ loading. The fracture mode depending on the fracture mechanism must be distinguished from the loading form.  相似文献   

4.
To reveal the water inrush mechanics of underground deep rock mass subjected to dynamic disturbance such as blasting, compression-shear rock crack initiation rule and the evolution of crack tip stress intensity factor are analyzed under static-dynamic loading and seepage water pressure on the basis of theoretical deduction and experimental research. It is shown that the major influence factors of the crack tip stress intensity factor are seepage pressure, dynamic load, static stress and crack angle. The existence of seepage water pressure aggravates propagation of branch cracks. With the seepage pressure increasing, the branch crack experiences unstable extension from stable propagation. The dynamic load in the direction of maximum main stress increases type I crack tip stress intensity factor and its influence on type II crack intensity factor is related with crack angle and material property. Crack initiation angle changes with the dynamic load. The initial crack initiation angle of type I dynamic crack fracture is 70.5°. The compression-shear crack initial strength is related to seepage pressure, confining pressure, and dynamic load. Experimental results verify that the initial crack strength increases with the confining pressure increasing, and decreases with the seepage pressure increasing.  相似文献   

5.
The dynamic stress intensity factor for a semi-infinite crack in an otherwise unbounded elastic body is analyzed The crack is subjected to a pair of suddenly applied point loads on its faces at a distance l away from the crack tip The solution of the problem is obtained by superposition of the solutions of two simpler problems. The first of these problems is Lamb' s problem, while the second problem considers a half space with its surface subjected to the negative of the normal displacement induced by Lamb's problem in the range x>0. The latter is solved by means of integral transforms together with the application of Weiner-Hopf technique and Cagniard-de Hoop method. An exact expression is derived for the mode I stress intensity factor as a function of time for any point along the crack edge. Some features of the solution are discussed.  相似文献   

6.
A new specimen geometry-the double edge-cracked Brazilian disk and a relevant fracture analysis by weight function method are proposed for the investigation of rock fracture caused by compression-shear loading. Not only can the mixed mode fracture with any ratio of KI /KII be achieved, but also the pure mode n crack extension can be obtained. The combined mode fracture analysis for this geometry shows that diametral compression in the far-field can induce a compression-shear stress state in the singular stress field ahead of crack tips. Experimental investigations conducted on marble specimens show that the pure mode [I crack extension can be obtained when the dimen-sionless crack length a>0. 7 and the inclined crack angle 5°≤ψ≤40°. Normalized mode I and mode II stress intensity factors decrease from -0. 45 and 2. 47 at ψ= 5° to - 1. 65 and 1. 52 at ψ=40°, respectively. The strains at three points of specimen are also measured in order to investigate the influence of stress singularity on initi  相似文献   

7.
In order to calculate the stress intensity factor(SIF) of crack tips in two-dimensional cracks from the viewpoint of strain energy density, a procedure to use the strain energy density factor to calculate the SIF is proposed. In this paper, the procedure is presented to calculate the SIF of crack tips in mode I cracks, mode II cracks and I+II mixed mode cracks. Meanwhile, the results are compared to those calculated by traditional approaches or other approaches based on strain energy density and verified by theoretical solutions. Furthermore, the effect of mesh density near the crack tip is discussed, and the proper location where the strain energy density factor is calculated is also studied. The results show that the SIF calculated by this procedure is close to not only those calculated by other approaches but also the theoretical solutions, thus it is capable of achieving accurate results.Besides, the mesh density around the crack tip should meet such requirements that, in the circular area created, the first layer of singular elements should have a radius about 0.05 mm and each element has a circumferential directional meshing angle to be15°–20°. Furthermore, for a single element around the crack tip, the strain energy density factor is suggested to be calculated in the location where half of the sector element's radius from the crack tip.  相似文献   

8.
A special constant deflection device for TEM has been designed, and then change of dislocation configuration ahead of a crack tip during stress corrosion cracking (SCC) of brass in water and of Ti-24Al-11Nb alloy in methanol and initiation of SCC can he observed in TEM In situ tensile test in TEM for brass was carried out for comparison The results show that anodic dissolution during SCC can facilitate dislocation emission, multiplication and motion, and a dislocation free zone (DFZ) is formed The stress at a particular site in the DFZ, which is an elastic zone and is thinned gradually through corrosion-enhanced dislocation emission and motion, is possibly up to the cohesive strength, resulting in initiating of a nanocrack of SCC in the DFZ or sometimes at the crack tip. Because of the action of the corrosion solution the nanocrack of SCC propagates into a cleavage or intergranular microcrack rather than blunts into a void like in situ tension in TEM  相似文献   

9.
The changes of microstructures after the exhaustion of dislocation glide ability but before cracking, as well as microcrack initiation by them, were studied in detail by in-situ transmission electron microscopy (TEM) for pure copper, aluminum and iron. Thinning occurred in the thicker regions through dislocation gliding in the three metals. After that, {111} <112> twinning or tensile cracking took place in thinned zones in fcc metals. In the case of twinning, new microcracks were initiated along another {111} plane by the high stress concentration near the growing tip of the twin, while in iron (bcc), many nanocracks were initiated in the thinned areas just ahead of the crack front, resulting in misorientation microstructure from which microcracks or microvoids were developed.  相似文献   

10.
A detailed analysis of modeⅡstress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode Ⅱ SIFs at crack tips can be obtained by simply calculating an integral of the product of mode Ⅱ weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode Ⅱ SIF, fⅡ , is derived for different crack lengths (from 0.1 to 0.7) and inclination angles (from 10^。 to 75^。) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors‘ previous work on modeⅠfracture analysis, the new specimen geometry can be used to study fracture through any combination of mode Ⅰ and mode Ⅱ loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode Ⅱ crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.  相似文献   

11.
In-plane shear crack sub-critical propagation of rock at high temperature was studied by finite element method and shear-box(i.e.compression-shear) test with newly designed electrically conductive adhesive method.Numerical and experimental results show that the normalized shear(Mode Ⅱ) stress intensity factors,K ⅡT/KT0 is decreased as the temperature increases because high temperature can improve stress distribution at crack tip and reduce the Mode Ⅱ stress intensity factor.Microscopic features of fractured surface are of little pits and secondary micro-cracks in the vicinity(1.5-4.0 mm) of the crack tip.The chevron-shape secondary cracks gradually merge in the length of about 4-5 mm and disappear along the direction of crack propagation.Stable shear crack propagation time is increased with the increasing temperature while the stable shear crack propagation rate is decreased with the increasing temperature,since high temperature can increase the shear(Mode Ⅱ) fracture toughness and prevent the crack growth.It is necessary to ensure the ligament of specimen long enough to measure the maximum unstable crack propagation rate of rock.  相似文献   

12.
In order to determine the dynamic stress intensity factors(DSIFs)for a single edge crack at the center hole of a finite plate under a compressive step loading parallel to the crack,the finite element method was employed to solve the cracked plate problem.The square-root stress singularity around the crack tip was simulated by quarter point singular elements collapsed by 8-node two-dimensional isoparametric elements.The DSIFs with and without considering crack face contact situations were evaluated by using the displacement correlation technique,and the influence of contact interaction between crack surfaces on DSIFs was investigated.The numerical results show that if the contact interaction between crack surfaces is ignored,the negative mode I DSIFs may be obtained and a physically impossible interpenetration or overlap of the crack surfaces will occur.Thus the crack face contact has a significant influence on the mode I DSIFs.  相似文献   

13.
Using a special TEM constant deflection device, the change in dislocation configuration ahead of a loaded crack tip before and after adsorption of Hg atoms and the initiation of liquid metal-induced nanocracks (LMIC) have been observed. The results show that chemisorption of Hg atoms can facilitate dislocation emission, multiplication and motion. Nanocracks will be initiated in the dislocation-free zone (DFZ) or at the crack tip when chemisorption-facilitated dislocation emission, multiplication and motion reach a critical condition. On the basis of the available experimental evidence concerning liquid metal embnttlement (LME), a new mechanism for this phenomenon is considered. This involves the fact that the decrease in surface energy induced by chemisorption of Hg atoms results in a reduction in the critical stress intensity factors for dislocation emission and the resistance for dislocation motion. On the other hand, the plastic work and KIC will decrease with the decrease in the surface energy.  相似文献   

14.
A detailed analysis of mode Ⅱ stress intensity factors(SIFs) for the double edge cracked Brazilian disk subjected to different diametral compression is presented using a weight function method. The mode Ⅱ SIFs at crack tips can be obtained by simply calculating an integral of the product of mode Ⅱ weight function and the shear stress on the prospective crack faces of uncracked disk loaded by a diametral compression. A semi-analytical formula for the calculation of normalized mode Ⅱ SIF, fⅡ , is derived for different crack lengths (from 0. 1 to 0.7) and inclination angles (from 10° to 75°) with respect to loading direction. Comparison between the obtained results and finite element method solutions shows that the weight function method is of high precision. Combined with the authors' previous work on mode Ⅰ fracture analysis, the new specimen geometry can be used to study fracture through any combination of mode Ⅰ and mode Ⅱ loading by a simple alignment of the crack relative to the diameter of compression loading, and to obtain pure mode Ⅱ crack extension. Another advantage of this specimen geometry is that it is available directly from rock core and is also easy to fabricate.  相似文献   

15.
The subcritical crack growth and fracture toughness in peridotite, lherzolite and amphibolite were investigated with double torsion test. The results show that water-rock interaction has a significant influence on subcritical crack growth. With water-rock interaction, the crack velocity increases, while the stress intensity factor declines, which illustrates that water-rock interaction can decrease the strength of rocks and accelerate the subcritical crack growth. Based on Charlse theory and Hilling & Charlse theory, the test data were analyzed by regression and the correlation coefficients were all higher than 0.7, which shows the correlation is significant. This illustrates that both theories can explain the results of tests very well. Therefore, it is believed that the subcritical crack growth attributes to the breaking of chemical bond, which is caused by the combined effect of the tensile stress and the chemical reaction between the material at crack tip and the corrosive agent. Meanwhile, water-rock interaction has a vital effect on fracture toughness. The fracture toughness of samples under atmospheric environment is higher than that of samples immersed in water. And water-rock interaction has larger influence on fracture toughness in amphibolite than that in peridotite and lherzolite.  相似文献   

16.
Regarding an interface as a Brekhovskisk’s nonhomogeneous interlayer,the scatteringproblem of SH wave by a crack at the interlayer has been discussd.It is found that the solutionof the wave fields in the vicinity of crack may be reduced to solving a singular integral equationof the first kind with Cauchy kernel,which has thoroughly been investigated theoretically andnumerically.Finally,the experssions for calculating stress intensity factor at the crack tip havebeen proposed.  相似文献   

17.
A constant deflection device designed for use within a transmission electron microscopy (TEM) was used to investigate the change in dislocation configuration ahead of a crack tip during stress corrosion cracking (SCO of type 310 austenitic stainless steel in a boiling MgCI2 solution, and the initiation process of stress corrosion microcrack. Results showed that corrosion process during SCC enhanced dislocation emission, multiplication and motion. Microcracks of SCC were initiated when the corrosion-enhanced dislocation emission and motion reached critical state.A passive film formed during corrosion of austenitic stainless steel in the boiling MgCI2 solution generated a tensile stress. During SCC, the additive tensile stress generated at the metal/passive film interface helps enhance dislocation emission and motion.  相似文献   

18.
The problem of scattering of SH-wave by a circular cavity and an arbitrary beeline crack in right-angle plane was investigated using the methods of Green’s function,complex variables and muti-polar coordinates.Firstly,we constructed a suitable Green’s function,which is an essential solution to the displacement field for the elastic right-angle plane possessing a circular cavity while bearing out-of-plane harmonic line source load at arbitrary point.Secondly,based on the method of crack-division,integration for solution was established,then expressions of displacement and stress were obtained while crack and circular cavities were both in existence.Finally,the dynamic stress concentration factor around the circular cavity and the dynamic stress intensity factor at crack tip were discussed to the cases of different parameters in numerical examples.Calculation results show that the crack produces adverse engineering influence on both of the dynamic stress concentration factor and the dynamic stress intensity factor.  相似文献   

19.
The mechanism of cracks propagation and cracks coalescence due to compressive loading of the brittle substances containing pre-existing cracks (flaws) was modeled experimentally using specially made rock-like specimens from Portland Pozzolana Cement (PPC). The breakage process of the specimens was studied by inserting single and double flaws with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The first crack was oriented at 50&#176; from the horizontal direction and kept constant throughout the analysis while the orientation of the second crack was changed. It is experimentally observed that the wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasi-coplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of maximum principle stress. These experimental works were also simulated numerically by a modified higher order displacement discontinuity method and the cracks propagation and cracks coalescence were studied based on Mode I and Mode II stress intensity factors (SIFs). It is concluded that the wing cracks initiation stresses for the specimens change from 11.3 to 14.1 MPain the case of numerical simulations and from 7.3 to 13.8 MPa in the case of experimental works. It is observed that cracks coalescence stresses change from 21.8 to 25.3 MPa and from 19.5 to 21.8 MPa in the numerical and experimental analyses, respectively. Comparing some of the numerical and experimental results with those recently cited in the literature validates the results obtained by the proposed study. Finally, a numerical simulation was accomplished to study the effect of confining pressure on the crack propagation process, showing that the SIFs increase and the crack initiation angles change in this case.  相似文献   

20.
A quasi three dimensions molecular dynamic method was used to simulate the effect of hydrogen on dislocation emission and crack propagation in nickel.In situ observation in a transmission electron microscope (TEM) was used to confirm the simulation results.The simulation result indicated that hydrogen solubilized in nickel decreased the critical stress intensity for the dislocation emission,i.ei.,hydrogen enhanced dislocation emission.In situ observation in TEM showed that hydrogen enhanced dislocation emission and motion before the initiation of hydrogen-induced crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号