共查询到20条相似文献,搜索用时 62 毫秒
1.
提出了解决批量流水线调度问题的离散微粒群优化算法。该算法采用了基于工序的编码方式,设计了新的粒子生成公式,从而使微粒群算法可以直接应用于调度问题。同时,针对微粒群算法容易陷入局部最优的缺陷,将其与模拟退火算法结合,得到了改进的微粒群优化算法。仿真实验表明了上述算法的有效性。 相似文献
2.
3.
标准微粒群算法(PSO)通常被用于求解连续优化的问题,很少被用于离散问题的优化求解,如作业车间调度问题(JSP)。因此,针对PSO算法易早熟、收敛慢等缺点提出一种求解作业车间调度问题(JSP)的混合微粒群算法。算法将微粒群算法、遗传算法(GA)、模拟退火(SA)算法相结合,既增强了算法的局部搜索能力,降低了算法对参数的依赖,同时改善了PSO算法和GA算法易早熟的缺点。对经典JSP问题的仿真实验表明:与标准微粒群算法相比,该算法不仅能有效避免算法中的早熟问题,并且算法的全局收敛性得到了显著提高。 相似文献
4.
李剑 《计算机与数字工程》2009,37(11):21-24,67
采用借鉴遗传算法的编码、交叉和变异操作的遗传微粒群算法对带车辆能力约束的车辆路径优化问题进行求解。设计了符合微粒群算法进化机制的变异算子和改进顺序交叉算子以满足遗传微粒群算法中三条染色体交叉与变异的需要。对多个基准测试实例仿真计算表明算法有效且具有收敛速度快和精度高的优点。 相似文献
5.
改进微粒群算法求解模糊交货期Flow-shop调度问题 总被引:1,自引:0,他引:1
针对模糊交货期Flow-shop调度问题的特点,论文提出用微粒群这种具有快速收敛、全局性能好的迭代优化算法进行求解,并使用惩罚函数、增加数据记忆库和自适应变异机制等方法对微粒群算法进行改进,减少了算法陷入局部极值的可能性。通过仿真实例,改进微粒群算法的全局寻优、收敛性和克服早熟的能力均优于遗传、启发式算法。 相似文献
6.
7.
微粒群算法是一种群体智能优化算法,它具有个体数目少、计算简单、鲁棒性好等优点;其缺点是容易陷入局部极值点,进化后期收敛速度慢且精度较差。本文对微粒群算法的基本原理、参数设置及优化进行了介绍,并对0-1背包问题的模型及目前的解决方法进行了简介。 相似文献
8.
传统粒子群优化算法在解决组合优化问题上具有一定的局限性,通过分析其优化机理,对迭代公式加以改进,提出了改进微粒群算法。算法中,利用遗传算法的交叉思想来完成粒子间的信息交换,以期达到粒子更新。粒子进化过程中,为保留群体中的优秀粒子,使用了加速度这一优化算子。为避免粒子陷入局部搜索,迭代过程中使用免疫算法来动态评价微粒群体。通过大量实验仿真,算法可以有效求解作业车间调度问题,验证了算法的合理性。 相似文献
9.
改进微粒群优化算法求解旅行商问题 总被引:21,自引:2,他引:21
对微粒群优化算法的速度位置算式进行了改进,提出一种改进的微粒群优化算法。该算法符合组合优化问题的特点,在求解旅行商问题上有较高的搜索效率。将改进的PSO算法分别应用于14点的TSP问题以及中国旅行商问题中,该算法在较短时间内获得了目前已知的最好解。 相似文献
10.
网格工作流中的调度问题是一个复杂且具有挑战性的问题,它影响着网格工作流执行成功与否及效率的高低.针对具有时序和因果约束关系的网格工作流优化调度问题进行了研究,建立了网格工作流的任务调度模型和调度问题的目标模型,并应用微粒群算法来优化网格工作流中任务的调度.实验结果证明该算法优于传统的调度算法. 相似文献
11.
结合外点法具有局部搜索能力强、处理约束条件简单的特点,把违反约束的粒子用外点法处理以满足约束设计出一种新的粒子群算法求解约束优化问题.实验结果表明,新算法性能优于现有其它算法,是一种通用、高效、稳健的智能算法.它兼顾粒子群算法和外点法的优点,既有较快的收敛速度,又能以非常大概率求得约束优化问题的全局最优解,同时还提高了解的精度. 相似文献
12.
将粒子群算法运用于求解柔性作业车间调度问题,采用基于轮盘赌的编码方法以及基于邻域互换的局部搜索方法。通过两个不同规模算例的试验计算,与基于粒子位置取整的编码方法进行对比分析,说明了轮盘赌编码方法求解柔性作业车间调度问题的有效性。且采用该编码方法的混合粒子群算法在求解柔性作业车间调度问题时具有更好的求解性能。 相似文献
13.
基于离散粒子群优化算法求解矩形件排样问题 总被引:4,自引:0,他引:4
改进了一种近似排样算法,并将改进的近似排样算法与离散粒子群优化算法结合求解矩形件排样问题.设计了应用离散粒子群优化算法求解矩形件排样问题的相关操作和定义,给出了离散粒子群优化算法求解矩形件排样问题的详细步骤,最后通过实验测试,验证了算法的有效性. 相似文献
14.
改进的粒子群优化算法 总被引:1,自引:0,他引:1
将基本粒子群算法粒子行为基于个体极值点和全局极值点变化为基于个体极值中心,并且按一定概率选择其他粒子的个体极值点,设计了一种新的粒子群优化算法.新算法的学习行为符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解.实验结果表明了算法的有效性. 相似文献
15.
带组织的粒子群优化同步并行算法 总被引:1,自引:0,他引:1
提出带组织的粒子群优化同步并行算法.粒子群优化算法是一种基于群体智能的演化算法,具有良好的优化性能.但由于群体的迅速收敛和多样性低,导致算法早熟收敛.带组织的粒子群优化同步并行算法虽然克服了早熟收敛问题,但无形中却增加了计算时间.结合已有的并行计算技术,构造出了该方法的同步并行计算算法,仿真试验证明并行算法具有更快的收敛速度. 相似文献
16.
袁建清 《计算机应用与软件》2012,29(4):148-150,155
对带时间窗的动态车辆调度问题进行分析,引入虚拟点和时间轴概念,建立基于时间轴的动态车辆调度模型,并提出基于C-W节约法和禁忌搜索的混合禁忌搜索算法进行求解.算法中使用动态方法构造候选解和动态禁忌长度的选取策略来提高算法的收敛速度,最后通过测试实例验证了该混合算法解决动态车辆调度问题的有效性和可行性. 相似文献
17.
带组织的粒子群优化算法——OPSO 总被引:1,自引:0,他引:1
提出了带组织的粒子群优化算法.粒子群优化算法是一种基于群体智能的演化算法,具有良好的优化性能.但由于群体的迅速收敛和多样性低,导致算法早熟收敛.依据人类社会活动的特点,在粒子群中引入组织的概念,定义了组织的优胜劣汰.在组织优胜劣汰的过程中,更新最差组织,进而保持粒子群的多样性,避免算法的早熟收敛问题.仿真实验表明:OPSO比PSO有更好的优化能力. 相似文献
18.
本文提出了一种改进粒子群优化算法。在进化中增加了个体间的协作机制,这种改进后的学习行为更符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。最后将该方法用于PERT网络工期一费用模型求解,数字仿真表明了算法的有效性。 相似文献
19.
针对n人非合作博弈多重Nash均衡求解问题,提出一种自适应小生境粒子群算法。该算法融合了序列小生境技术、粒子群优化算法的思想,并加入了变异算子和自动生成小生境半径机制,使得所有粒子尽可能分布到整个搜索空间的不同局部峰值区域,从而有效地求得博弈问题的多重Nash均衡。最后给出几个数值算例,计算结果表明所提出的算法具有较好的性能。 相似文献
20.
解Job-shop调度问题的混合模拟退火进化规划 总被引:8,自引:1,他引:8
提出运用混合模拟退火进化规划(SAEP)求解Job-shop调度问题.首先介绍了SAEP和进化规划(EP)的不同选择方法以及他们的变异算子,最后给出了仿真实例,并比较了这两种算法的优劣 相似文献