共查询到20条相似文献,搜索用时 0 毫秒
1.
Gentry KL Smith SW 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2004,51(7):800-808
A catheter device with integrated ultrasound imaging array and ultrasound ablation transducer is introduced. This device has been designed for use in interventional cardiac procedures in which the cardiac anatomy is first imaged using real-time three-dimensional (3-D) ultrasound, then ablated to treat arrhythmias. The imaging array includes 112 elements operating at 5.4 MHz arranged in a 2-D matrix. Individual elements have a bandwidth of 21% and an insertion loss of 80 dB. The array has an azimuth resolution of 12 degrees and an elevation resolution of 8.7 degrees. The ablation transducer is a concentric piezoelectric transducer PZT-4 ring (outside diameter (O.D.), 4.5 mm, inside diameter (I.D.), 3.1 mm) operating at 10 MHz that surrounds the imaging array. It can produce a spatial-peak, temporal-average intensity up to 16 W/cm2. The entire device fits into a 9 Fr lumen with a 14 Fr tip to accommodate the ablation ring. With this device we have imaged, in realtime 3-D, a variety of targets including wire phantoms, fixed sheep hearts, and fresh bovine tissue. The ablation ring has been used to heat tissue-mimicking rubber 14 degrees C, as well as create lesions in fresh bovine tissue. 相似文献
2.
Yeh DT Oralkan O Wygant IO O'Donnell M Khuri-Yakub BT 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2006,53(6):1202-1211
Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications. 相似文献
3.
Sparse 2-D arrays for 3-D phased array imaging--design methods 总被引:2,自引:0,他引:2
Austeng A Holm S 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2002,49(8):1073-1086
One of the most promising techniques for limiting complexity for real-time 3-D ultrasound systems is to use sparse 2-D layouts. For a given number of channels, optimization of performance is desirable to ensure high quality volume images. To find optimal layouts, several approaches have been followed with varying success. The most promising designs proposed are Vernier arrays, but also these suffer from high peaks in the sidelobe region compared with a dense array. In this work, we propose new methods based on the principles of suppression of grating lobes to form symmetric and non-symmetric regular sparse periodic and radially periodic designs. The proposed methods extend the concept of sparse periodic layouts by exploiting either an increased number of symmetry axes or radial symmetry. We also introduce two new strategies to form designs with nonoverlapping elements. The performance of the new layouts range from the performance of Vernier arrays to almost that of dense arrays. Our designs have simplicity in construction, flexibility in the number of active elements, and the possibility of trade off sidelobe peaks against sidelobe energy. 相似文献
4.
Daher NM Yen JT 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2006,53(5):912-924
A two-dimensional (2-D) array of 256 X 256 = 65,536 elements, with total area 4 X 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single-layer, flex circuits that, compared to multilayer flex circuits, are simpler to design, cheaper to manufacture, and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time-acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving -6 dB and -20 dB beamwidths of less than 0.2 and 0.5 mm, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with -6 dB and -20 dB beamwidths in the order of 0.4 and 0.8 mm, respectively. 相似文献
5.
Chi Hyung Seo Yen J.T. 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2009,56(4):837-847
We present simulation and experimental results from a 5-MHz, 256times256 2-D (65536 elements, 38.4times38.4 mm) 2-D array transducer with row-column addressing. The main benefits of this design are a reduced number of interconnects, a modified transmit/receive switching scheme with a simple diode circuit, and an ability to perform volumetric imaging of targets near the transducer with transmit beamforming in azimuth and receive beamforming in elevation. The final dimensions of the transducer were 38.4 mm times 38.4 mm times 300 mum. After a row-column transducer was prototyped, the series resonance impedance was 104 Omega at 5.4 MHz. The measured -6 dB fractional bandwidth was 53% with a center frequency of 5.3 MHz. The SNR at the transmit focus was measured to be 30 dB. At 5 MHz, the average nearest neighbor crosstalk was -25 dB. In this paper, we present 3-D images of both 5 pairs of nylon wires embedded in a clear gelatin phantom and an 8 mm diameter cylindrical anechoic cyst phantom acquired from a 256 times 256 2-D array transducer made from a 1-3 composite. We display the azimuth and elevation B-scans as well as the C-scan for each image. The cross-section of the wires is visible in the azimuth B-scan, and the long axes can be seen in the elevation B-scan and C-scans. The pair of wires with 1-mm axial separation is discernible in the elevational B-scan. When a single wire from the wire target phantom was used, the measured lateral beamwidth was 0.68 mm and 0.70 mm at 30 mm depth in transmit beamforming and receive beamforming, respectively, compared with the simulated beamwidth of 0.55 mm. The cross-section of the cyst is visible in the azimuth B-scan whereas the long axes can be seen as a rectangle in the elevation B-scan and C-scans. 相似文献
6.
Austeng A Holm S 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2002,49(8):1087-1093
To be able to describe more precisely the behavior of a real-time 3-D ultrasound system with either a dense array or various sparse designs, experimental data from a 2-D fully connected array prototype with 50/spl times/50 elements have been collected. The data have been processed off line to form synthetic aperture 3-D volume images. Simulated and experimental results are compared and show good correlation. The performance of the best sparse designs, all thinned to more than 50%, offer performances comparable to a dense array. 相似文献
7.
Inerfield M Lockwood GR Garverick SL 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2002,49(2):243-254
Sigma-delta (ΣΔ) modulation allows delay resolution in ultrasound beamformers to be achieved by simple clock cycle delays applied to the undecimated bitstream, greatly reducing the complexity of the signal processing and the number of bits in the datapath. The simplifications offered by this technique have the potential for low power and portable operation in advanced systems such as 3-D and color Doppler imagers. In this paper, an architecture for a portable, real-time, 3-D sparse synthetic aperture ultrasound beamformer based on ΣΔ modulation is presented, and its simulated performance is analyzed. Specifically, with a 65-element linear phased array and three transmit events, this architecture is shown to achieve a 1.1° beamwidth, a -54-dB secondary lobe level, and a theoretical frame rate of 1700 frames/s at λ/64 delay resolution using a second-order low pass ΣΔ modulator. Finally, a technique for modifying the proposed multi-beam architecture to allow improved analog-to-digital (A/D) resolution by premodulating the input signal for bandpass ΣΔ modulation is also presented 相似文献
8.
Blancher J Léger C Nguyen LD 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2004,51(5):634-639
A fast continuous rotating ultrasound scan-head transducer was used to perform three-dimensional (3-D) echocardiography with 2-D images acquired during a single cardiac cycle. The 3-D images were reconstructed by interpolating 2-D data acquired with the probe. Two experiments were carried out to validate the image reconstructions. A dynamic cardiac phantom was used as a known reference to compare the minimal and maximal volumes estimated manually on the reconstructed 3-D images. The left ventricle (LV) volume of 30 healthy volunteers also were estimated using a semiautomatic ellipse approach and compared to measurements obtained with standard 2-D examination. Results showed a good agreement between 3-D and reference measurements. 相似文献
9.
Buma T Spisar M O'Donnell M 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2003,50(9):1161-1176
Optical generation of ultrasound is a promising alternative to piezoelectricity for high-frequency arrays. An array element is defined by the size and location of a laser beam focused on a suitable surface. Optical generation using the thermoelastic effect has traditionally suffered from low conversion efficiency. We previously demonstrated an increase in conversion efficiency of nearly 20 dB with an optical absorbing layer consisting of a mixture of polydimethylsiloxane (PDMS) and carbon black spin coated onto a glass microscope slide. Radiation pattern measurements with an 85 MHz spherically focused transducer indicated an array element size of 20 /spl mu/m. These measurements lacked the spatial resolution required to reveal fine details in the radiated acoustic field. Here we report radiation pattern measurements with a 5-/spl mu/m spatial sampling, showing that the radiated acoustic field is degraded by leaky Rayleigh waves launched from the PDMS/glass interface. We demonstrate that replacing the glass with a clear PDMS substrate eliminates the leaky Rayleigh waves, producing a broad and smooth radiation pattern suitable for a two-dimensional (2-D) phased array operating at frequencies greater than 50 MHz. 相似文献
10.
Wygant I.O. Jamal N.S. Lee H.J. Nikoozadeh A. Oralkan O. Karaman M. Khuri-Yakub B.T. 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2009,56(10):2145-2156
State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom. 相似文献
11.
Z Yu S Blaak ZY Chang J Yao JG Bosch C Prins CT Lancée N de Jong MA Pertijs GC Meijer 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2012,59(7):1500-1512
There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE. 相似文献
12.
《Engineering Analysis with Boundary Elements》2006,30(11):963-970
MEMS devices such as comb drives and rotary drives are geometrically simple in that each of the components may be represented as a ‘sweep’ of a 2-D cross-section through a given height. This simplicity leads to simpler CAD requirements, geometric robustness, faster visualization, etc. Further, 3-D electrostatic simulation may be simplified to a 2-D problem over the cross-section if one neglects 3-D fringing. Such 2-D simulations provide a quick feedback to the designer on various parameters such as capacitance and electrostatic forces.However, as is well known, 3-D simulations cannot be avoided if fringing is significant, or when these devices need to be fully optimized. Such 3-D simulations unfortunately involve constructing the full 3-D geometry, volume/surface mesh, etc.In this paper, we demonstrate that one can pose and solve a 2-D problem that accounts for 3-D fringing. The proposed technique does not require the construction of the 3-D CAD model or surface/volume mesh. Instead, the 3-D electrostatics problem is collapsed to 2-D via a novel dimensional reduction method. Once the 2-D problem is solved, the full 3-D field and associated charges/forces can be recovered, as a post-processing step. The simplicity and computational efficiency of the technique lends itself well to parametric study and design optimization. 相似文献
13.
Løvstakken L Bjaerum S Martens D Torp H 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2006,53(2):289-299
This paper presents a new method for the visualization of two-dimensional (2-D) blood flow in ultrasound imaging systems called blood flow imaging (BFI). Conventional methods of color flow imaging (CFI) and power Doppler (PD) techniques are limited as the velocity component transversal to the ultrasound beam cannot be estimated from the received Doppler signal. The BFI relies on the preservation and display of the speckle pattern originating from the blood flow scatterer signal, and it provides qualitative information of the blood flow distribution and movement in any direction of the image. By displaying speckle pattern images acquired with a high frame rate in slow motion, the blood flow movement can be visually tracked from frame to frame. The BFI is easily combined with conventional CFI and PD methods, and the resulting display modes have been shown to have several advantages compared to CFI or PD methods alone. Two different display modes have been implemented: one combining BFI with conventional CFI, and one combining BFI with PD. Initial clinical trials have been performed to assess the clinical usefulness of BFI. The method especially has potential in vascular imaging, but it also shows potential in other clinical applications. 相似文献
14.
Voormolen MM Krenning BJ Lancée CT ten Cate FJ Roelandt JR van der Steen AF de Jong N 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2006,53(10):1739-1748
Although the advantages of three-dimensional (3-D) echocardiography have been acknowledged, its application for routine diagnosis is still very limited. This is mainly due to the relatively long acquisition time. Only recently has this problem been addressed with the introduction of new real-time 3-D echo systems. This paper describes the design, characteristics, and capabilities of an alternative concept for rapid 3-D echocardiographic recordings. The presented fast-rotating ultrasound (FRU)-transducer is based on a 64-element phased array that rotates with a maximum speed of 8 Hz (480 rpm). The large bandwidth of the FRU-transducer makes it highly suitable for tissue and contrast harmonic imaging. The transducer presents itself as a conventional phased-array transducer; therefore, it is easily implemented on existing 2-D echo systems, without additional interfacing. The capabilities of the FRU-transducer are illustrated with in-vitro volume measurements, harmonic imaging in combination with a contrast agent, and a preliminary clinical study. 相似文献
15.
Yen JT Steinberg JP Smith SW 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2000,47(1):93-110
Several sparse 2-D arrays for real time rectilinear volumetric imaging were investigated. All arrays consisted of 128x128=16,384 elements with lambda spacing operating at 5 MHz. Because of system limitations, not all of the elements could be used. From each array, 256 elements were used as transmitters, and 256 elements were used as receivers. These arrays were compared by computer simulation using Field II. For each array, beamplots for the on-axis case and an illustrative off-axis case were obtained. For the off-axis case, the effects of receive mode dynamic focusing were studied to maintain the beam perpendicular to the transducer face. Main lobe widths, side lobe heights, clutter floor levels, and pulse-echo sensitivities were quantified for each array. The sparse arrays, including a vernier periodic array, a random array, and a Mills cross array, were compared with a fully sampled array that served as the "gold standard". The Mills cross design showed the best overall performance under the current system constraints. 相似文献
16.
G. F. Carey M. Sharma K. C. Wang 《International journal for numerical methods in engineering》1988,26(12):2607-2622
A ‘family’ of tree data structures for adaptive mesh refinement is described and details concerning the associated logic are provided. The data structures encompass triangular elements and quadrilateral elements in two dimensions and quadrilateral bricks in three dimensions. Furthermore, both linear (bilinear) and quadratic (biquadratic) element types, respectively, are developed. Representative refinement results are given for the bilinear, trilinear and biquadratic types and associated performance studies made for the refinement procedure. 相似文献
17.
Hazard CR Lockwood GR 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》1999,46(4):972-980
A real-time 3-D imaging system requires the development of a beamformer that can generate many beams simultaneously. In this paper, we discuss and evaluate a suitable synthetic aperture beamformer. The proposed beamformer is based on a pipelined network of high speed digital signal processors (DSP). By using simple interpolation-based beamforming, only a few calculations per pixel are required for each channel, and an entire 2-D synthetic aperture image can be formed in the time of one transmit event. The performance of this beamformer was explored using a computer simulation of the radiation pattern. The simulations were done for a full 64-element array and a sparse array with the same receive aperture but only five transmit elements. We assessed the effects of changing the sampling rate and amplitude quantization by comparing the relative levels of secondary lobes in the radiation patterns. The results show that the proposed beamformer produces a radiation pattern equivalent to a conventional beamformer using baseband demodulation, provided that the sampling rate is approximately 10 times the center frequency of the transducer (34% bandwidth pulse). The simulations also show that the sparse array is not significantly more sensitive to delay or amplitude quantization than the full array. 相似文献
18.
Intracardiac catheter 2-D arrays on a silicon substrate 总被引:1,自引:0,他引:1
Lee W Smith SW 《IEEE transactions on ultrasonics, ferroelectrics, and frequency control》2002,49(4):415-425
The design, fabrication, and characterization of a 7 MHz, two-dimensional (2-D) array transducer built on a silicon substrate is described. The array fits inside a 9-French (2.9 mm O.D.) catheter for use in real-time intracardiac volumetric imaging. The -6 dB fractional bandwidth of the transducer is 30%, the 50 /spl Omega/ pitch-catch insertion loss is 78 dB, and the interelement crosstalk is -25 dB. Realtime volumetric images in phantoms and in-vitro images of a sheep heart have been acquired yielding measured spatial resolution of 2 mm at a depth of 1 cm. The cardiac structures imaged include ventricular chambers, interventricular septum, mitral and tricuspid valves and real-time 3-D rendered volumes of the tricuspid valve in the open and closed position. 相似文献
19.
J. H. Kim J. W. Hettenhouser C. K. Moon G. A. Holmes 《Journal of Materials Science》2009,44(14):3626-3632
A fiber placement device is described and methodology is given for preparing two-dimensional (2-D) and three-dimensional (3-D)
combinatorial microcomposites. Although 2-D microcomposites with uniform fiber spacing have been prepared previously, the
preparation of uniformly spaced 3-D microcomposites with 6–20 μm diameter fibers is new. The preparation of these combinatorial
specimens was motivated by research results from reference [Li et al. (1995) Compos Sci Technol 54:251]. These results showed
that the mean fragment length of the broken fibers in an array of fibers of the shear-lag models increases as the inter-fiber
separation decreases. It was noted that shear-lag theory predicts the opposite effect. Therefore, specimens of this type are
needed to unambiguously verify this trend. In addition, data from this new technology should delineate the factors that influence
critical flaw nucleation in unidirectional laminate composites.
This paper is declared as a work of the U.S. Government and is not subject to copyright protection in the United States.
相似文献
G. A. HolmesEmail: |