首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present a robust, unbiased technique for intelligent light‐path construction in path‐tracing algorithms. Inspired by existing path‐guiding algorithms, our method learns an approximate representation of the scene's spatio‐directional radiance field in an unbiased and iterative manner. To that end, we propose an adaptive spatio‐directional hybrid data structure, referred to as SD‐tree, for storing and sampling incident radiance. The SD‐tree consists of an upper part—a binary tree that partitions the 3D spatial domain of the light field—and a lower part—a quadtree that partitions the 2D directional domain. We further present a principled way to automatically budget training and rendering computations to minimize the variance of the final image. Our method does not require tuning hyperparameters, although we allow limiting the memory footprint of the SD‐tree. The aforementioned properties, its ease of implementation, and its stable performance make our method compatible with production environments. We demonstrate the merits of our method on scenes with difficult visibility, detailed geometry, and complex specular‐glossy light transport, achieving better performance than previous state‐of‐the‐art algorithms.  相似文献   

2.
Monte Carlo methods for physically‐based light transport simulation are broadly adopted in the feature film production, animation and visual effects industries. These methods, however, often result in noisy images and have slow convergence. As such, improving the convergence of Monte Carlo rendering remains an important open problem. Gradient‐domain light transport is a recent family of techniques that can accelerate Monte Carlo rendering by up to an order of magnitude, leveraging a gradient‐based estimation and a reformulation of the rendering problem as an image reconstruction. This state of the art report comprehensively frames the fundamentals of gradient‐domain rendering, as well as the pragmatic details behind practical gradient‐domain uniand bidirectional path tracing and photon density estimation algorithms. Moreover, we discuss the various image reconstruction schemes that are crucial to accurate and stable gradient‐domain rendering. Finally, we benchmark various gradient‐domain techniques against the state‐of‐the‐art in denoising methods before discussing open problems.  相似文献   

3.
We solve the light transport problem by introducing a novel unbiased Monte Carlo algorithm called replica exchange light transport, inspired by the replica exchange Monte Carlo method in the fields of computational physics and statistical information processing. The replica exchange Monte Carlo method is a sampling technique whose operation resembles simulated annealing in optimization algorithms using a set of sampling distributions. We apply it to the solution of light transport integration by extending the probability density function of an integrand of the integration to a set of distributions. That set of distributions is composed of combinations of the path densities of different path generation types: uniform distributions in the integral domain, explicit and implicit paths in light (particle/photon) tracing, indirect paths in bidirectional path tracing, explicit and implicit paths in path tracing, and implicit caustics paths seen through specular surfaces including the delta function in path tracing. The replica‐exchange light transport algorithm generates a sequence of path samples from each distribution and samples the simultaneous distribution of those distributions as a stationary distribution by using the Markov chain Monte Carlo method. Then the algorithm combines the obtained path samples from each distribution using multiple importance sampling. We compare the images generated with our algorithm to those generated with bidirectional path tracing and Metropolis light transport based on the primary sample space. Our proposing algorithm has better convergence property than bidirectional path tracing and the Metropolis light transport, and it is easy to implement by extending the Metropolis light transport.  相似文献   

4.
We present a novel framework for efficiently computing the indirect illumination in diffuse and moderately glossy scenes using density estimation techniques. Many existing global illumination approaches either quickly compute an overly approximate solution or perform an orders of magnitude slower computation to obtain high-quality results for the indirect illumination. The proposed method improves photon density estimation and leads to significantly better visual quality in particular for complex geometry, while only slightly increasing the computation time. We perform direct splatting of photon rays, which allows us to use simpler search data structures. Since our density estimation is carried out in ray space rather than on surfaces, as in the commonly used photon mapping algorithm, the results are more robust against geometrically incurred sources of bias. This holds also in combination with final gathering where photon mapping often overestimates the illumination near concave geometric features. In addition, we show that our photon splatting technique can be extended to handle moderately glossy surfaces and can be combined with traditional irradiance caching for sparse sampling and filtering in image space.  相似文献   

5.
Robust and efficient rendering of complex lighting effects, such as caustics, remains a challenging task. While algorithms like vertex connection and merging can render such effects robustly, their significant overhead over a simple path tracer is not always justified and – as we show in this paper ‐ also not necessary. In current rendering solutions, caustics often require the user to enable a specialized algorithm, usually a photon mapper, and hand‐tune its parameters. But even with carefully chosen parameters, photon mapping may still trace many photons that the path tracer could sample well enough, or, even worse, that are not visible at all. Our goal is robust, yet lightweight, caustics rendering. To that end, we propose a technique to identify and focus computation on the photon paths that offer significant variance reduction over samples from a path tracer. We apply this technique in a rendering solution combining path tracing and photon mapping. The photon emission is automatically guided towards regions where the photons are useful, i.e., provide substantial variance reduction for the currently rendered image. Our method achieves better photon densities with fewer light paths (and thus photons) than emission guiding approaches based on visual importance. In addition, we automatically determine an appropriate number of photons for a given scene, and the algorithm gracefully degenerates to pure path tracing for scenes that do not benefit from photon mapping.  相似文献   

6.
On the foundations of many rendering algorithms it is the symmetry between the path traversed by light and its adjoint path starting from the camera. However, several effects, including polarization or fluorescence, break that symmetry, and are defined only on the direction of light propagation. This reduces the applicability of bidirectional methods that exploit this symmetry for simulating effectively light transport. In this work, we focus on how to include these non‐symmetric effects within a bidirectional rendering algorithm. We generalize the path integral to support the constraints imposed by non‐symmetric light transport. Based on this theoretical framework, we propose modifications on two bidirectional methods, namely bidirectional path tracing and photon mapping, extending them to support polarization and fluorescence, in both steady and transient state.  相似文献   

7.
Recently, deep learning-based denoising approaches have led to dramatic improvements in low sample-count Monte Carlo rendering. These approaches are aimed at path tracing, which is not ideal for simulating challenging light transport effects like caustics, where photon mapping is the method of choice. However, photon mapping requires very large numbers of traced photons to achieve high-quality reconstructions. In this paper, we develop the first deep learning-based method for particle-based rendering, and specifically focus on photon density estimation, the core of all particle-based methods. We train a novel deep neural network to predict a kernel function to aggregate photon contributions at shading points. Our network encodes individual photons into per-photon features, aggregates them in the neighborhood of a shading point to construct a photon local context vector, and infers a kernel function from the per-photon and photon local context features. This network is easy to incorporate in many previous photon mapping methods (by simply swapping the kernel density estimator) and can produce high-quality reconstructions of complex global illumination effects like caustics with an order of magnitude fewer photons compared to previous photon mapping methods. Our approach largely reduces the required number of photons, significantly advancing the computational efficiency in photon mapping.  相似文献   

8.
This paper presents an improvement to the stochastic progressive photon mapping (SPPM), a method for robustly simulating complex global illumination with distributed ray tracing effects. Normally, similar to photon mapping and other particle tracing algorithms, SPPM would become inefficient when the photons are poorly distributed. An inordinate amount of photons are required to reduce the error caused by noise and bias to acceptable levels. In order to optimize the distribution of photons, we propose an extension of SPPM with a Metropolis‐Hastings algorithm, effectively exploiting local coherence among the light paths that contribute to the rendered image. A well‐designed scalar contribution function is introduced as our Metropolis sampling strategy, targeting at specific parts of image areas with large error to improve the efficiency of the radiance estimator. Experimental results demonstrate that the new Metropolis sampling based approach maintains the robustness of the standard SPPM method, while significantly improving the rendering efficiency for a wide range of scenes with complex lighting.  相似文献   

9.
We propose an efficient and robust image‐space denoising method for noisy images generated by Monte Carlo ray tracing methods. Our method is based on two new concepts: virtual flash images and homogeneous pixels. Inspired by recent developments in flash photography, virtual flash images emulate photographs taken with a flash, to capture various features of rendered images without taking additional samples. Using a virtual flash image as an edge‐stopping function, our method can preserve image features that were not captured well only by existing edge‐stopping functions such as normals and depth values. While denoising each pixel, we consider only homogeneous pixels—pixels that are statistically equivalent to each other. This makes it possible to define a stochastic error bound of our method, and this bound goes to zero as the number of ray samples goes to infinity, irrespective of denoising parameters. To highlight the benefits of our method, we apply our method to two Monte Carlo ray tracing methods, photon mapping and path tracing, with various input scenes. We demonstrate that using virtual flash images and homogeneous pixels with a standard denoising method outperforms state‐of‐the‐art image‐space denoising methods.  相似文献   

10.
Robust statistical methods are employed to reduce the noise in Monte Carlo ray tracing. Through the use of resampling, the sample mean distribution is determined for each pixel. Because this distribution is uni‐modal and normal for a large sample size, robust estimates converge to the true mean of the pixel values. Compared to existing methods, less additional storage is required at each pixel because the sample mean distribution can be distilled down to a compact size, and fewer computations are necessary because the robust estimation process is sampling independent and needs a small input size to compute pixel values. The robust statistical pixel estimators are not only resistant to impulse noise, but they also remove general noise from fat‐tailed distributions. A substantial speedup in rendering can therefore be achieved by reducing the number of samples required for a desired image quality. The effectiveness of the proposed approach is demonstrated for path tracing simulations.  相似文献   

11.
In recent years, much work was devoted to the design of light editing methods such as relighting and light path editing. So far, little work addressed the target‐based manipulation and animation of caustics, for instance to a differently‐shaped caustic, text or an image. The aim of this work is the animation of caustics by blending towards a given target irradiance distribution. This enables an artist to coherently change appearance and style of caustics, e.g., for marketing applications and visual effects. Generating a smooth animation is nontrivial, as photon density and caustic structure may change significantly. Our method is based on the efficient solution of a discrete assignment problem that incorporates constraints appropriate to make intermediate blends plausibly resemble caustics. The algorithm generates temporally coherent results that are rendered with stochastic progressive photon mapping. We demonstrate our system in a number of scenes and show blends as well as a key frame animation.  相似文献   

12.
Image space photon mapping has the advantage of simple implementation on GPU without pre‐computation of complex acceleration structures. However, existing approaches use only a single image for tracing caustic photons, so they are limited to computing only a part of the global illumination effects for very simple scenes. In this paper we fully extend the image space approach by using multiple environment maps for photon mapping computation to achieve interactive global illumination of dynamic complex scenes. The two key problems due to the introduction of multiple images are 1) selecting the images to ensure adequate scene coverage; and 2) reliably computing ray‐geometry intersections with multiple images. We present effective solutions to these problems and show that, with multiple environment maps, the image‐space photon mapping approach can achieve interactive global illumination of dynamic complex scenes. The advantages of the method are demonstrated by comparison with other existing interactive global illumination methods.  相似文献   

13.
We present a new method for estimating the radiance function of complex area light sources. The method is based on Jensen's photon mapping algorithm. In order to capture high angular frequencies in the radiance function, we incorporate the angular domain into the density estimation. However, density estimation in position-direction space makes it necessary to find a tradeoff between the spatial and angular accuracy of the estimation. We identify the parameters which are important for this tradeoff and investigate the typical estimation errors. We show how the large data size, which is inherent to the underlying problem, can be handled. The method is applied to different automotive tail lights. It can be applied to a wide range of other real-world light sources.  相似文献   

14.
Gradient-domain rendering can highly improve the convergence of light transport simulation using the smoothness in image space. These methods generate image gradients and solve an image reconstruction problem with rendered image and the gradient images. Recently, a previous work proposed a gradient-domain volumetric photon density estimation for homogeneous participating media. However, the image reconstruction relies on traditional L1 reconstruction, which leads to obvious artifacts when only a few rendering passes are performed. Deep learning based reconstruction methods have been exploited for surface rendering, but they are not suitable for volume density estimation. In this paper, we propose an unsupervised neural network for image reconstruction of gradient-domain volumetric photon density estimation, more specifically for volumetric photon mapping, using a variant of GradNet with an encoded shift connection and a separated auxiliary feature branch, which includes volume based auxiliary features such as transmittance and photon density. Our network smooths the images on global scale and preserves the high frequency details on a small scale. We demonstrate that our network produces a higher quality result, compared to previous work. Although we only considered volumetric photon mapping, it's straightforward to extend our method for other forms, like beam radiance estimation.  相似文献   

15.
We present a photon mapping technique capable of computing high quality global illumination at interactive frame rates. By extending the concept of photon differentials to efficiently handle diffuse reflections, we generate footprints at all photon hit points. These enable illumination reconstruction by density estimation with variable kernel bandwidths without having to locate the k nearest photon hits first. Adapting an efficient BVH construction process for ray tracing acceleration, we build photon maps that enable the fast retrieval of all hits relevant to a shading point. We present a heuristic that automatically tunes the BVH build's termination criterion to the scene and illumination conditions. As all stages of the algorithm are highly parallelizable, we demonstrate an implementation using NVidia's CUDA manycore architecture running at interactive rates on a single GPU. Both light source and camera may be freely moved with global illumination fully recalculated in each frame.  相似文献   

16.
Design approach to a novel balanced, circularly polarized (CP) square loop antenna under even‐mode resonance is proposed in this paper. The loop antenna is diagonally fed by a fork‐like dipole launcher. By matching the respective natural boundary condition of the loop radiator and the dipole launcher, the resonant even‐mode with inherent CP radiation characteristic can be sufficiently excited. Both the bi‐ and uni‐directional cases are designed and investigated. A bi‐directional CP loop antenna with a 3‐dB ratio axial ratio (AR) bandwidth of 6.6% is designed at first. A uni‐directional antenna having a planar metallic reflector is further designed. The uni‐directional loop antenna exhibits excellent uni‐directional CP performance with a high front‐to‐back ratio of 40dB and a 3‐dB AR bandwidth of 7.6% in both theory and experiment.  相似文献   

17.
Even though much research was dedicated to the acceleration of consistent, progressive light transport simulations, the computation of fully converged images is still very time‐consuming. This is problematic, as for the practical use in production pipelines, the rapid editing of lighting effects is important. While previous approaches restart the simulation with every scene manipulation, we make use of the coherence between frames before and after a modification in order to accelerate convergence of the context that remained similar. This is especially beneficial if a scene is edited that has already been converging for a long time, because much of the previous result can be reused, e.g., sharp caustics cast or received by the unedited scene parts. In its essence, our method performs the scene modification stochastically by predicting and accounting for the difference image. In addition, we employ two heuristics to handle cases in which stochastic removal is likely to lead to strong noise. Typical scene interactions can be broken down into object adding and removal, material substitution, camera movement and light editing, which we all examine in a number of test scenes both qualitatively and quantitatively. As we focus on caustics, we chose stochastic progressive photon mapping as the underlying light transport algorithm. Further, we show preliminary results of bidirectional path tracing and vertex connection and merging.  相似文献   

18.
Existing algorithms can efficiently render refractive objects of constant refractive index. For a medium with a continuously varying index of refraction, most algorithms use the ray equation of geometric optics to compute piecewise‐linear approximations of the non‐linear rays. By assuming a constant refractive index within each tracing step, these methods often need a large number of small steps to generate satisfactory images. In this paper, we present a new approach for tracing non‐constant, refractive media based on the ray equations of gradient‐index optics. We show that in a medium of constant index gradient, the ray equation has a closed‐form solution, and the intersection point between a ray and the medium boundaries can be efficiently computed using the bisection method. For general non‐constant media, we model the refractive index as a piecewise‐linear function and render the refraction by tracing the tetrahedron‐based representation of the media. Our algorithm can be easily combined with existing rendering algorithms such as photon mapping to generate complex refractive caustics at interactive frame rates. We also derive analytic ray formulations for tracing mirages – a special gradient‐index optical phenomenon.  相似文献   

19.
Monte Carlo Path Tracing is a core light transport technique which is used for modern methods (like BDPT, MLT, VCM and others). One of the main challenge of efficient GPU Path Tracing implementation is inefficient workload caused by paths of different lengths; few threads process the long paths, while other threads are idle. A work distribution technique called “Path Regeneration” is commonly used to solve this problem. We introduce a novel GPU implementation of path regeneration technique called “in place block based path regeneration.” In comparison to previous approaches our algorithm possesses two main advantages: it has lower self-cost and it does not move any per-ray data along threads in memory, thus, our algorithm can be easily integrated to any advanced path tracing technique (like BDPT, MLT and other) or photon mapping. We tested our solution with path tracing using both CUDA and OpenCL.  相似文献   

20.
Backward polygon beam tracing methods, that is beam tracing from the light source (L), are well suited to gather path coherency from specular (S) scattering surfaces. These methods are useful for modelling and efficiently simulating caustics on diffuse (D) surfaces; an effect due to LS+D transport paths. This paper generalizes backward polygon beam tracing to include a glossy (G) scattering surface. To this end the details of a beam tracing lumped model and implementation of L(S | G)D transport paths are presented. Although we limit the discussion to short transport paths, we show that backward beam tracing is faster than photon mapping by an order of magnitude for rendering caustics from glossy and specular surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号