首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Modeling of realistic garments is essential for online shopping and many other applications including virtual characters. Most of existing methods either require a multi‐camera capture setup or a restricted mannequin pose. We address the garment modeling problem according to a single input image. We design an all‐pose garment outline interpretation, and a shading‐based detail modeling algorithm. Our method first estimates the mannequin pose and body shape from the input image. It further interprets the garment outline with an oriented facet decided according to the mannequin pose to generate the initial 3D garment model. Shape details such as folds and wrinkles are modeled by shape‐from‐shading techniques, to improve the realism of the garment model. Our method achieves similar result quality as prior methods from just a single image, significantly improving the flexibility of garment modeling.  相似文献   

2.
We present a novel method to generate a virtual character's multi‐contact poses adaptive to the various shapes of the environment. Given the user‐specified center of mass (CoM) position and direction as inputs, our method finds the potential contacts for the character in the surrounding geometry of the environment and generates a set of stable poses that are contact‐rich. Major contributions of the work are in efficiently finding admissible support points for the target environment by precomputing candidate support points from a human pose database, and in automatically generating interactive poses that can maintain stable equilibrium. We develop the concept of support complexity to scale the set of precomputed support points by the geometric complexity of the environment. We demonstrate the effectiveness of our method by creating contact poses for various test cases of environments.  相似文献   

3.
Images/videos captured by portable devices (e.g., cellphones, DV cameras) often have limited fields of view. Image stitching, also referred to as mosaics or panorama, can produce a wide angle image by compositing several photographs together. Although various methods have been developed for image stitching in recent years, few works address the video stitching problem. In this paper, we present the first system to stitch videos captured by hand‐held cameras. We first recover the 3D camera paths and a sparse set of 3D scene points using CoSLAM system, and densely reconstruct the 3D scene in the overlapping regions. Then, we generate a smooth virtual camera path, which stays in the middle of the original paths. Finally, the stitched video is synthesized along the virtual path as if it was taken from this new trajectory. The warping required for the stitching is obtained by optimizing over both temporal stability and alignment quality, while leveraging on 3D information at our disposal. The experiments show that our method can produce high quality stitching results for various challenging scenarios.  相似文献   

4.
Statistical shape modeling is a widely used technique for the representation and analysis of the shapes and shape variations present in a population. A statistical shape model models the distribution in a high dimensional shape space, where each shape is represented by a single point. We present a design study on the intuitive exploration and visualization of shape spaces and shape models. Our approach focuses on the dual‐space nature of these spaces. The high‐dimensional shape space represents the population, whereas object space represents the shape of the 3D object associated with a point in shape space. A 3D object view provides local details for a single shape. The high dimensional points in shape space are visualized using a 2D scatter plot projection, the axes of which can be manipulated interactively. This results in a dynamic scatter plot, with the further extension that each point is visualized as a small version of the object shape that it represents. We further enhance the population‐object duality with a new type of view aimed at shape comparison. This new “shape evolution view” visualizes shape variability along a single trajectory in shape space, and serves as a link between the two spaces described above. Our three‐view exploration concept strongly emphasizes linked interaction between all spaces. Moving the cursor over the scatter plot or evolution views, shapes are dynamically interpolated and shown in the object view. Conversely, camera manipulation in the object view affects the object visualizations in the other views. We present a GPU‐accelerated implementation, and show the effectiveness of the three‐view approach using a number of real‐world cases. In these, we demonstrate how this multi‐view approach can be used to visually explore important aspects of a statistical shape model, including specificity, compactness and reconstruction error.  相似文献   

5.
Computer graphics is one of the most efficient ways to create a stereoscopic image. The process of stereoscopic CG generation is, however, still very inefficient compared to that of monoscopic CG generation. Despite that stereo images are very similar to each other, they are rendered and manipulated independently. Additional requirements for disparity control specific to stereo images lead to even greater inefficiency. This paper proposes a method to reduce the inefficiency accompanied in the creation of a stereoscopic image. The system automatically generates an optimized single image representation of the entire visible area from both cameras. The single image can be easily manipulated with conventional techniques, as it is spatially smooth and maintains the original shapes of scene objects. In addition, a stereo image pair can be easily generated with an arbitrary disparity setting. These convenient and efficient features are achieved by the automatic generation of a stereo camera pair, robust occlusion detection with a pair of Z‐buffers, an optimization method for spatial smoothness, and stereo image pair generation with a non‐linear disparity adjustment. Experiments show that our technique dramatically improves the efficiency of stereoscopic image creation while preserving the quality of the results.  相似文献   

6.
Estimation of 3D body shapes from dressed‐human photos is an important but challenging problem in virtual fitting. We propose a novel automatic framework to efficiently estimate 3D body shapes under clothes. We construct a database of 3D naked and dressed body pairs, based on which we learn how to predict 3D positions of body landmarks (which further constrain a parametric human body model) automatically according to dressed‐human silhouettes. Critical vertices are selected on 3D registered human bodies as landmarks to represent body shapes, so as to avoid the time‐consuming vertices correspondences finding process for parametric body reconstruction. Our method can estimate 3D body shapes from dressed‐human silhouettes within 4 seconds, while the fastest method reported previously need 1 minute. In addition, our estimation error is within the size tolerance for clothing industry. We dress 6042 naked bodies with 3 sets of common clothes by physically based cloth simulation technique. To the best of our knowledge, We are the first to construct such a database containing 3D naked and dressed body pairs and our database may contribute to the areas of human body shapes estimation and cloth simulation.  相似文献   

7.
Automatic camera control for scenes depicting human motion is an imperative topic in motion capture base animation, computer games, and other animation based fields. This challenging control problem is complex and combines both geometric constraints, visibility requirements, and aesthetic elements. Therefore, existing optimization‐based approaches for human action overview are often too demanding for online computation. In this paper, we introduce an effective automatic camera control which is extremely efficient and allows online performance. Rather than optimizing a complex quality measurement, at each time it selects one active camera from a multitude of cameras that render the dynamic scene. The selection is based on the correlation between each view stream and the human motion in the scene. Two factors allow for rapid selection among tens of candidate views in real‐time, even for complex multi‐character scenes: the efficient rendering of the multitude of view streams, and optimized calculations of the correlations using modified CCA. In addition to the method's simplicity and speed, it exhibits good agreement with both cinematic idioms and previous human motion camera control work. Our evaluations show that the method is able to cope with the challenges put forth by severe occlusions, multiple characters and complex scenes.  相似文献   

8.
We describe a novel multiplexing approach to achieve tradeoffs in space, angle and time resolution in photography. We explore the problem of mapping useful subsets of time‐varying 4D lightfields in a single snapshot. Our design is based on using a dynamic mask in the aperture and a static mask close to the sensor. The key idea is to exploit scene‐specific redundancy along spatial, angular and temporal dimensions and to provide a programmable or variable resolution tradeoff among these dimensions. This allows a user to reinterpret the single captured photo as either a high spatial resolution image, a refocusable image stack or a video for different parts of the scene in post‐processing. A lightfield camera or a video camera forces a‐priori choice in space‐angle‐time resolution. We demonstrate a single prototype which provides flexible post‐capture abilities not possible using either a single‐shot lightfield camera or a multi‐frame video camera. We show several novel results including digital refocusing on objects moving in depth and capturing multiple facial expressions in a single photo.  相似文献   

9.
10.
Accurate depth estimation is a challenging, yet essential step in the conversion of a 2D image sequence to a 3D stereo sequence. We present a novel approach to construct a temporally coherent depth map for each image in a sequence. The quality of the estimated depth is high enough for the purpose of2D to 3D stereo conversion. Our approach first combines the video sequence into a panoramic image. A user can scribble on this single panoramic image to specify depth information. The depth is then propagated to the remainder of the panoramic image. This depth map is then remapped to the original sequence and used as the initial guess for each individual depth map in the sequence. Our approach greatly simplifies the required user interaction during the assignment of the depth and allows for relatively free camera movement during the generation of a panoramic image. We demonstrate the effectiveness of our method by showing stereo converted sequences with various camera motions.  相似文献   

11.
We present a semi‐automatic method for reconstructing flower models from a single photograph. Such reconstruction is challenging since the 3D structure of a flower can appear ambiguous in projection. However, the flower head typically consists of petals embedded in 3D space that share similar shapes and form certain level of regular structure. Our technique employs these assumptions by first fitting a cone and subsequently a surface of revolution to the flower structure and then computing individual petal shapes from their projection in the photo. Flowers with multiple layers of petals are handled through processing different layers separately. Occlusions are dealt with both within and between petal layers. We show that our method allows users to quickly generate a variety of realistic 3D flowers from photographs and to animate an image using the underlying models reconstructed from our method.  相似文献   

12.
We present a real‐time multi‐view facial capture system facilitated by synthetic training imagery. Our method is able to achieve high‐quality markerless facial performance capture in real‐time from multi‐view helmet camera data, employing an actor specific regressor. The regressor training is tailored to specified actor appearance and we further condition it for the expected illumination conditions and the physical capture rig by generating the training data synthetically. In order to leverage the information present in live imagery, which is typically provided by multiple cameras, we propose a novel multi‐view regression algorithm that uses multi‐dimensional random ferns. We show that higher quality can be achieved by regressing on multiple video streams than previous approaches that were designed to operate on only a single view. Furthermore, we evaluate possible camera placements and propose a novel camera configuration that allows to mount cameras outside the field of view of the actor, which is very beneficial as the cameras are then less of a distraction for the actor and allow for an unobstructed line of sight to the director and other actors. Our new real‐time facial capture approach has immediate application in on‐set virtual production, in particular with the ever‐growing demand for motion‐captured facial animation in visual effects and video games.  相似文献   

13.
Feature learning for 3D shapes is challenging due to the lack of natural paramterization for 3D surface models. We adopt the multi‐view depth image representation and propose Multi‐View Deep Extreme Learning Machine (MVD‐ELM) to achieve fast and quality projective feature learning for 3D shapes. In contrast to existing multi‐view learning approaches, our method ensures the feature maps learned for different views are mutually dependent via shared weights and in each layer, their unprojections together form a valid 3D reconstruction of the input 3D shape through using normalized convolution kernels. These lead to a more accurate 3D feature learning as shown by the encouraging results in several applications. Moreover, the 3D reconstruction property enables clear visualization of the learned features, which further demonstrates the meaningfulness of our feature learning.  相似文献   

14.
Image‐based lighting has allowed the creation of photo‐realistic computer‐generated content. However, it requires the accurate capture of the illumination conditions, a task neither easy nor intuitive, especially to the average digital photography enthusiast. This paper presents an approach to directly estimate an HDR light probe from a single LDR photograph, shot outdoors with a consumer camera, without specialized calibration targets or equipment. Our insight is to use a person's face as an outdoor light probe. To estimate HDR light probes from LDR faces we use an inverse rendering approach which employs data‐driven priors to guide the estimation of realistic, HDR lighting. We build compact, realistic representations of outdoor lighting both parametrically and in a data‐driven way, by training a deep convolutional autoencoder on a large dataset of HDR sky environment maps. Our approach can recover high‐frequency, extremely high dynamic range lighting environments. For quantitative evaluation of lighting estimation accuracy and relighting accuracy, we also contribute a new database of face photographs with corresponding HDR light probes. We show that relighting objects with HDR light probes estimated by our method yields realistic results in a wide variety of settings.  相似文献   

15.
16.
Structured light scanning is ubiquituous in 3D acquisition. It is capable of capturing high geometric detail at a low cost under a variety of challenging scene conditions. Recent methods have demonstrated robustness in the presence of artifacts due to global illumination, such as inter‐reflections and sub‐surface scattering, as well as imperfections caused by projector defocus. For comparing approaches, however, the quantitative evaluation of structured lighting schemes is hindered by the challenges in obtaining ground truth data, resulting in a poor understanding for these methods across a wide range of shapes, materials, and lighting configurations. In this paper, we present a benchmark to study the performance of structured lighting algorithms in the presence of errors caused due to the above properties of the scene. In order to do this, we construct a synthetic structured lighting scanner that uses advanced physically based rendering techniques to simulate the point cloud acquisition process. We show that, under conditions similar to that of a real scanner, our synthetic scanner replicates the same artifacts found in the output of a real scanner. Using this synthetic scanner, we perform a quantitative evaluation of four different structured lighting techniques – gray‐code patterns, micro‐phase shifting, ensemble codes, and unstructured light scanning. The evaluation, performed on a variety of scenes, demonstrate that no one method is capable of adequately handling all sources of error – each method is appropriate for addressing distinct sources of error.  相似文献   

17.
This paper presents a method that generates natural and intuitive deformations via direct manipulation and smooth interpolation for multi‐element 2D shapes. Observing that the structural relationships between different parts of a multi‐element 2D shape are important for capturing its feature semantics, we introduce a simple structure called a feature frame to represent such relationships. A constrained optimization is solved for shape manipulation to find optimal deformed shapes under user‐specified handle constraints. Based on the feature frame, local feature preservation and structural relationship maintenance are directly encoded into the objective function. Beyond deforming a given multi‐element 2D shape into a new one at each key frame, our method can automatically generate a sequence of natural intermediate deformations by interpolating the shapes between the key frames. The method is computationally efficient, allowing real‐time manipulation and interpolation, as well as generating natural and visually plausible results.  相似文献   

18.
Modelling trees according to desired shapes is important for many applications. Despite numerous methods having been proposed in tree modelling, it is still a non‐trivial task and challenging. In this paper, we present a new variational computing approach for generating realistic trees in specific shapes. Instead of directly modelling trees from symbolic rules, we formulate the tree modelling as an optimization process, in which a variational cost function is iteratively minimized. This cost function measures the difference between the guidance shape and the target tree crown. In addition, to faithfully capture the branch structure of trees, several botanical factors, including the minimum total branches volume and spatial branches patterns, are considered in the optimization to guide the tree modelling process. We demonstrate that our approach is applicable to generate trees with different shapes, from interactive design and complex polygonal meshes.  相似文献   

19.
4D Video Textures (4DVT) introduce a novel representation for rendering video‐realistic interactive character animation from a database of 4D actor performance captured in a multiple camera studio. 4D performance capture reconstructs dynamic shape and appearance over time but is limited to free‐viewpoint video replay of the same motion. Interactive animation from 4D performance capture has so far been limited to surface shape only. 4DVT is the final piece in the puzzle enabling video‐realistic interactive animation through two contributions: a layered view‐dependent texture map representation which supports efficient storage, transmission and rendering from multiple view video capture; and a rendering approach that combines multiple 4DVT sequences in a parametric motion space, maintaining video quality rendering of dynamic surface appearance whilst allowing high‐level interactive control of character motion and viewpoint. 4DVT is demonstrated for multiple characters and evaluated both quantitatively and through a user‐study which confirms that the visual quality of captured video is maintained. The 4DVT representation achieves >90% reduction in size and halves the rendering cost.  相似文献   

20.
The morphable model has been employed to efficiently describe 3D face shape and the associated albedo with a reduced set of basis vectors. The spherical harmonics (SH) model provides a compact basis to well approximate the image appearance of a Lambertian object under different illumination conditions. Recently, the SH and morphable models have been integrated for 3D face shape reconstruction. However, the reconstructed 3D shape is either inconsistent with the SH bases or obtained just from landmarks only. In this work, we propose a geometrically consistent algorithm to reconstruct the 3D face shape and the associated albedo from a single face image iteratively by combining the morphable model and the SH model. The reconstructed 3D face geometry can uniquely determine the SH bases, therefore the optimal 3D face model can be obtained by minimizing the error between the input face image and a linear combination of the associated SH bases. In this way, we are able to preserve the consistency between the 3D geometry and the SH model, thus refining the 3D shape reconstruction recursively. Furthermore, we present a novel approach to recover the illumination condition from the estimated weighting vector for the SH bases in a constrained optimization formulation independent of the 3D geometry. Experimental results show the effectiveness and accuracy of the proposed face reconstruction and illumination estimation algorithm under different face poses and multiple‐light‐source illumination conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号