共查询到16条相似文献,搜索用时 78 毫秒
1.
利用遥感图像对森林类型进行分类是大面积地调查、监测、分析森林资源的快速与经济的方法,但由于不同森林的光谱特征非常相近而较难准确分类。因此,在GPS数据和高分辨率遥感图像的支持下,对水源林Landsat TM遥感图像用窗口法获得阔叶林、针叶林和竹林样本图像,然后计算其小波分解后小波系数的l1范数纹理测度构成分类特征向量,利用支持向量基SVM进行分类。结果表明,利用SVM对图像中阔叶林、针叶林和竹林分类平均精度在80%以上,可较准确地识别森林类型,图像总体分类精度达到90.2%,Kappa系数0.77,均比利用小波纹理特征的神经网络法和最大似然法有所提高,森林分类错误产生的主要原因是混交林造成两类森林间存在交集。该方法可以较有效地提高遥感图像森林类型的分类精度。 相似文献
2.
基于多特征提取和SVM分类器的纹理图像分类 总被引:1,自引:0,他引:1
能够从大量高分辨率遥感图像中识别出各种感兴趣的目标并进行归类,是一种具有广泛应用前景的技术需求.实验以MATLAB为平台,应用Gabor滤波器、高斯马尔柯夫随机场(GMRF)和灰度共生矩阵(GLCM)三种纹理图像特征提取算法对当前广泛应用于纹理图像分类的样本集brodatz光学数据库图像进行特征提取;然后在二分类支持向... 相似文献
3.
遥感图像纹理特征是光谱相近林型准确分类的有效方法,然而其带来分类特征向量维数增加和计算量增大。因此,对南方山区林地TM图像进行独立成分分析ICA降维,通过计算灰度共生矩阵获取纹理特征,使用SVM分类,研究林地类型的快速分类方法。结果表明,ICA与SVM法利用遥感图像纹理特征可较准确地实现林地类型分类,分类总精度、Kappa系数分别为85.4%、0.73,均高于SVM法、BP神经网络法、最大似然法、最小距离法;其对阔叶林、针叶林、竹林的分类精度依次为78.2%、80.1%、84.3%,误识率主要是由于混交林而造成两类林地之间存在交集,易出现的针阔混交林使得阔叶林、针叶林的分类精度低于竹林。 相似文献
4.
支持向量机(SVM)是一种表现卓越的分类方法,而灰度共生矩阵(GLCM)则是一种很好的纹理分析方法,故而本文提出了一种使用灰度共生矩阵进行特征提取的应用支持向量机的纹理特征分类法。实验结果表明,与直接应用灰度信息进行分类的支持向量机算法相比,本文方法可以取得更为准确的分类结果。 相似文献
5.
基于SVM算法的图像分类 总被引:1,自引:0,他引:1
介绍了SVM算法的原理和在图像分类上的一些应用,将该算法应用于飞机图像的分类,并跟传统的神经网络分类算法进行了比较。跟传统的基于神经网络的图像分类相比,具有良好的抗噪性和较高的识别率,并且具有良好的扩展性。对于飞机图像的分类问题有较好的应用。 相似文献
6.
基于SVM的遥感影像的分类 总被引:7,自引:1,他引:7
遥感图像的分类方法包括统计模式识别、句法模式识别、以及神经网络、遗传算法、模拟退火算法等等。本文分析了统计模式识别方法的优缺点,提出了使用SVM的方法进行遥感图像分类的设想,通过实验证明该方法是有效和稳健的。 相似文献
7.
基于支持向量机的纹理图像分类算法 总被引:1,自引:0,他引:1
研究纹理图像的分类问题,纹理特征提取和分类器设计是决定分类正确率高低的关键。由于库存图像较多,且质量受到噪声影响,使图像特征提取比较困难。针对传统特征提取和分类算法分类正确率不高的难题,提出一种基于支持向量机的纹理图像分类算法。首先采用Gabor滤波器对纹理特征进行提取,采用主成分分析对提取后的特征进行选择,最后采用支持向量机进行纹理图像的分类。采用Brodatz纹理库进行测试实验,实验结果表明,支持向量机分类算法提高了纹理图像的分类正确率,降低了误分率和拒分率,且分类速度加快,适用于更为复杂的纹理分类,为图像提取提供了参考。 相似文献
8.
综合纹理特征的高光谱遥感图像分类方法 总被引:1,自引:0,他引:1
吴昊 《计算机工程与设计》2012,33(5):1993-1996,2006
提出了一种基于Gabor滤波的高光谱遥感图像支持向量机(SVM)分类方法,通过将Gabor滤波器组产生的纹理特征引入SVM分类,不仅充分利用了SVM适于解决高维数据分类问题的优势,而且在分类过程中实现了空间结构信息和光谱信息的综合使用,有效利用了高光谱图像“图谱合一”的特性.采用中科院上海技术物理研究所研制的模块化成像光谱仪OMIS (operative modular imaging spectrometry)真实数据进行的实验,实验结果表明,该方法提高了分类效果,分类结果更具有空间连贯性,并且能有效地克服噪声的影响. 相似文献
9.
通过对传统小波多方向性缺失和Contourlet变换系数稀疏性的分析,提出运用方向性小波Contourlet分析纹理特征,以自组特征映射神经网络(SOM)处理Contourlet变换系数的重组序列.对SOM网络输出层codebook矩阵进行奇异值分解得到纹理图像特征向量的方法进行纹理分类,在充分利用图像各尺度方向信息的基础上,有效提取了图像纹理特征.实验结果表明,该方法分类效果显著,Contourlet变换比传统小波分解更适合于图像纹理特性的分析. 相似文献
10.
11.
12.
随着光学遥感图像技术的快速发展与广泛应用,对光学遥感图像的准确分类具有深远的研究意义。传统特征提取方式提取的高维特征中夹杂着许多冗余信息,分类过程可能导致过拟合现象,针对传统的线性降维算法不足以保持原始数据的内部结构,容易造成数据失真这一问题,提出基于流形学习的光学遥感图像分类算法。该算法首先提取出图像的SIFT特征,然后将流形学习运用于特征降维,最后结合支持向量机进行训练和识别。实验结果表明,在Satellite、NWPU和UCMerced实验数据中,冰川、建筑群和海滩分类精度得到了有效提高,达到85%左右;针对沙漠、岩石、水域等特殊环境遥感图像,分类精度提高了10%左右。总而言之,基于流形学习的分类算法对通过降维之后的数据能够保持在原高维空间中的拓扑结构,相似特征点能得到有效聚合,预防了"维数灾难",减少了计算量,保证了分类精度。 相似文献
13.
针对遥感影像场景中空间信息丰富以及冗余的地理特征会对网络训练时造成干扰等问题,提出一种采用特征重校准融合密集神经网络的遥感影像场景分类方法。通过缩聚与激发机制建立SE block,将SE block与其多尺度分支嵌入DenseNet-121中进行特征重校准,利用DenseNet中密集连接方式加强信息流的传递。该方法使得整体模型获得全局感受野的稳健特征表示,减少遥感场景特征的冗余映射。通过在两个公开遥感影像数据集UCMercedLandUse和SIRI-WHU中进行实验,分类精度分别高达97.7%和98.9%,验证了该方法的有效性。 相似文献
14.
.基于纹理和边缘的SAR图像SVM分类* 总被引:2,自引:0,他引:2
为实现SAR图像地物目标的有效分类,深入研究了基于灰度共生矩阵GLCM的四种纹理特征以及两个边缘特征。分析每个单独纹理或边缘特征在对SAR图像进行支持向量机SVM分类中对不同地物的分辨能力,选取不同的特征组合进行组合特征的SVM分类实验。对各种特征进行主成分分析PCA,并考察使用和不使用PCA两种情况下分类结果之间的差异。实验结果证明能量、边缘长度、对比度和相关度的特征组合在PCA作用下能够改善各类地物的分类精度,将总分类精度提高到90%以上。 相似文献
15.
针对运动想象脑电信号特征提取困难,分类正确率低的问题,提出了利用小波熵进行特征提取并采用支持向量机(SVM)来分类的算法。计算运动想象脑电信号的功率,通过理论分析选择小波包尺度,对信号功率进行小波包分解并计算其小波包熵(WPE),提取C3、C4导联的小波包熵插值组成特征向量,将特征向量作为分类器的输入送入支持向量机进行分类。采用国际BCI竞赛2003中的Graz数据进行验证,算法的最高分类正确率达97.56%。算法特征向量维数低、数据量小、分类正确率高,对运动想象脑电信号特征提取及分类的任务可以提供参考方法。 相似文献