首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main problem in nanomanipulation and nanoassembly using atomic force microscopy (AFM) is its lack of real-time visual feedback during manipulation. Fortunately, this problem has been solved by our recently developed augmented reality system, which includes real-time force feedback and real-time "videolized" visual feedback. Through the augmented reality interface, the operator can monitor real-time changes of the nanoenvironment during nanomanipulation through a movie-like AFM image. In this paper, the behavior of some nanowires under pushing is theoretically analyzed and the interaction among the tip, substrate, and nanowires has been modeled. Based on these models, the real-time interactive forces can be used to locally update the AFM image in order to obtain movie-like visual feedback in video frame rate. This augmented reality enhanced system capable of manipulation of nanoparticles and nanowires helps the operator to perform several operations without the need of a new image scan. AFM-based nanoassembly becomes feasible through this newly developed system.  相似文献   

2.
由于缺乏实时的传感器信息反馈,导致传统的基于原子力显微镜的纳米操作盲目,操作效率和成功率都非常低.为了克服这一问题,设计和实现了一种具有实时视觉和三维触觉反馈的纳米操作系统.当利用该系统进行纳米操作时,操作者不但可以实时感受到探针与被操作物体间的相互作用力,还可以在3D增强现实图像界面中观察到纳米操作场景的变化,并可以在线控制探针的三维运动.这种交互式的操作系统使得纳米操作变得容易可行.纳米刻画实验和多壁碳纳米管的推动实验验证了该系统的有效性和高效率.  相似文献   

3.
Cell-surface adhesion force is important for cell activities and the development of bio materials. In this paper, a method for in situ single cell (W303) adhesion force measurement was proposed based on nanorobotic manipulation system inside an environment scanning electron microscope (ESEM). An end effector was fabricated from a commercial atomic force microscope (AFM) cantilever by focused ion beam (FIB) etching. The spring constant of it was calibrated by nanomanipulation approach. Three kinds of hydrophilic and hydrophobic ITO plates were prepared by using VUV-irradiation and OTS coating techniques. The shear adhesion strength of the single yeast cell to each substrate was measured based on the deflection of the end effector. The results demonstrated that the cell adhesion force was larger under the wet condition in the ESEM environment than in the aqueous condition. It also showed that the cell adhesion force to hydrophilic surface was larger than that to the hydrophobic surface. Studies of single cell's adhesion on various plate surfaces and environments could give new insights into the tissue engineering and biological field.  相似文献   

4.
Scanning probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), has become a powerful tool in building nanoscale structures required by modern industry. In this article, the use of SPM for the manipulation of atoms and molecules for patterning nanostructures for opt-electronic and biomedical applications is reviewed. The principles and procedures of manipulation using STM and AFM-based technologies are presented with an emphasis on their ability to create a wide variety of nanostructures for different applications. The interaction among the atoms/molecules, surface, and tip are discussed. The approaches for positioning the atom/molecule from and to the desired locations and for precisely controlling its movement are elaborated for each specific manipulation technique. As an AFM-based technique, the dip-pen nanolithography is also included. Finally, concluding remarks on technological improvement and future research is provided.  相似文献   

5.
Masubuchi S  Arai M  Machida T 《Nano letters》2011,11(11):4542-4546
We have fabricated graphene/graphene oxide/graphene (G/GO/G) junctions by local anodic oxidation lithography using atomic force microscopy (AFM). The conductance of the G/GO/G junction decreased with the bias voltage applied to the AFM cantilever V(tip). For G/GO/G junctions fabricated with large and small |V(tip)|. GO was semi-insulating and semiconducting, respectively. AFM-based LAO lithography can be used to locally oxidize graphene with various oxidation levels and achieve tunability from semiconducting to semi-insulating GO.  相似文献   

6.
Nanomanipulation and nanofabrication with an atomic force microscope (AFM) or other scanning probe microscope (SPM) are a precursor for nanomanufacturing. It is still a challenging task to accomplish nanomanipulation automatically. In ambient conditions without stringent environmental controls, the task of nanomanipulation requires extensive human intervention to compensate for the spatial uncertainties of the SPM. Among these uncertainties, the thermal drift, which affects spatial resolution, is especially hard to solve because it tends to increase with time, and cannot be compensated simultaneously by feedback from the instrument. In this paper, a novel automatic compensation scheme is introduced to measure and estimate the drift one-step ahead. The scheme can be subsequently utilized to compensate for the thermal drift so that a real-time controller for nanomanipulation can be designed, as if the drift did not exist. Experimental results show that the proposed compensation scheme can predict drift with a small error, and therefore, can be embedded in the controller for manipulation tasks.  相似文献   

7.
Atomic force microscopy (AFM) was developed in 1986. It is an important and versatile surface technique, and is used in many research fields. In this review, we have summarized the methods and applications of AFM, with emphasis on nanofabrication. AFM is capable of visualizing surface properties at high spatial resolution and determining biomolecular interaction as well as fabricating nanostructures. Recently, AFM-based nanotechnologies such as nanomanipulation, force lithography, nanografting, nanooxidation and dip-pen nanolithography were developed rapidly. AFM tip (typical radius ranged from several nanometers to tens of nanometers) is used to modify the sample surface, either physically or chemically, at nanometer scale. Nanopatterns composed of semiconductors, metal, biomolecules, polymers, etc., were constructed with various AFM-based nanotechnologies, thus making AFM a promising technique for nanofabrication. AFM-based nanotechnologies have potential applications in nanoelectronics, bioanalysis, biosensors, actuators and high-density data storage devices.  相似文献   

8.
Fluorescent rare-earth-doped glass particles glued to the end of an atomic force microscope tip have been used to perform scanning near-field optical measurements on nanostructured samples. The fixation procedure of the fluorescent fragment at the end of the tip is described in detail. The procedure consists of depositing a thin adhesive layer on the tip. Then a tip approach is performed on a fragment that remains stuck near the tip extremity. To displace the particle and position it at the very end of the tip, a nanomanipulation is achieved by use of a second tip mounted on piezoelectric scanners. Afterward, the particle size is reduced by focused ion beam milling. These particles exhibit a strong green luminescence where excited in the near infrared by an upconversion mechanism. Images obtained near a metallic edge show a lateral resolution in the 180-200-nm range. Images we obtained by measuring the light scattered by 250-nm holes show a resolution well below 100 nm. This phenomenon can be explained by a local excitation of the particle and by the nonlinear nature of the excitation.  相似文献   

9.
A novel nanoknife with a buffering beam is proposed for single-cell cutting. The nanoknife was fabricated from a commercial atomic force microscopy (AFM) cantilever by focused-ion-beam (FIB) etching technique. The material identification of the nanoknife was determined using the energy dispersion spectrometry (EDS) method. It demonstrated that the gallium ion pollution of the nanoknife can be ignored during the etching processes. The buffering beam was used to measure the cutting force based on its deformation. The spring constant of the beam was calibrated based on a referenced cantilever by using a nanomanipulation approach. The tip of the nanoknife was designed with a small edge angle 5° to reduce the compression to the cell during the cutting procedure. For comparison, two other nanoknives with different edge angles, i.e. 25° and 45°, were also prepared. An in situ single-cell cutting experiment was performed using these three nanoknives inside an environmental scanning electron microscope (ESEM). The cutting force and the sample slice angle for each nanoknife were evaluated. It showed the compression to the cell can be reduced when using the nanoknife with a small edge angle 5°. Consequently, the nanoknife was capable for in situ single-cell cutting tasks.  相似文献   

10.
Tapping-mode atomic force microscopy (AFM), in which the vibrating tip periodically approaches, interacts and retracts from the sample surface, is the most common AFM imaging method. The tip experiences attractive and repulsive forces that depend on the chemical and mechanical properties of the sample, yet conventional AFM tips are limited in their ability to resolve these time-varying forces. We have created a specially designed cantilever tip that allows these interaction forces to be measured with good (sub-microsecond) temporal resolution and material properties to be determined and mapped in detail with nanoscale spatial resolution. Mechanical measurements based on these force waveforms are provided at a rate of 4 kHz. The forces and contact areas encountered in these measurements are orders of magnitude smaller than conventional indentation and AFM-based indentation techniques that typically provide data rates around 1 Hz. We use this tool to quantify and map nanomechanical changes in a binary polymer blend in the vicinity of its glass transition.  相似文献   

11.
In atomic force microscopy a cantilever with a sharp tip attached to it is scanned over the surface of a sample, and information about the surface is extracted by measuring how the deflection of the cantilever - which is caused by interactions between the tip and the surface - varies with position. In the most common form of atomic force microscopy, dynamic force microscopy, the cantilever is made to vibrate at a specific frequency, and the deflection of the tip is measured at this frequency. But the motion of the cantilever is highly nonlinear, and in conventional dynamic force microscopy, information about the sample that is encoded in the deflection at frequencies other than the excitation frequency is irreversibly lost. Multifrequency force microscopy involves the excitation and/or detection of the deflection at two or more frequencies, and it has the potential to overcome limitations in the spatial resolution and acquisition times of conventional force microscopes. Here we review the development of five different modes of multifrequency force microscopy and examine its application in studies of proteins, the imaging of vibrating nanostructures, measurements of ion diffusion and subsurface imaging in cells.  相似文献   

12.
The atomic force microscope (AFM) has been widely used as a nano-effector with a function of force sensing to detect interaction forces between an AFM tip and a sample, thereby controlling the process of the nanomanipulation. However, both the extent and accuracy of force application are significantly limited by the nonlinearity of the commonly used optical lever with a nonlinear position-sensitive detector (PSD). In order to compensate the nonlinearity of the optical lever, a nonlinear calibration method is presented. This method applies the nonlinear curve fit to a full-range position-voltage response of the photodiode, obtaining a continuous function of its voltage-related sensitivity. Thus, interaction forces can be defined as integrals of this sensitivity function between any two responses of photodiode voltage outputs, instead of rough transformation with a single conversion factor. The lateral position-voltage response of the photodiode, a universally acknowledged puzzle, was directly characterized by an accurately calibrated force sensor composed of a tippless piezoresistive microcantilever and corresponding electronics, regardless of any knowledge of the cantilevers and laser measuring system. Experiments using a rectangular cantilever (normal spring constant 0.24 N/m) demonstrated that the proposed nonlinear calibration method restrained the sensitivity error of normal position-voltage responses to 3.6% and extended the force application range.  相似文献   

13.
The nanomechanical properties of polymethyl methacrylate and indium phosphide were measured with an atomic force microscope and a nanoindentation system. The elastic moduli measured with the atomic force microscope are in good agreement with the values obtained with the nanoindentation system. The hardness is shown to be affected by the tip radius used in our experiments. The cantilever vertical and lateral movements were independently analyzed during nanoindentation, and the tip torsion can be attributed to a change from elastic to plastic deformation regimes of materials during force microscopy nanoindentation. An analysis of the lateral movement of the laser beam associated with the cantilever torsion was used to determine the material yield stress.  相似文献   

14.
Mechanical properties of amorphous carbon microcoil (CMC) synthesized by thermal chemical vapor deposition method were examined in compression and tension tests, using the lateral force mode of atomic force microscope (AFM). The AFM cantilever tip was manipulated by a piezoelectric scanner to contact, pull, and push an individual CMC. The lateral force that was exerted by the CMC deformation causes the twist of the AFM cantilever. It was monitored by the laser and photodetector of the AFM during the experiments. A linear response of the CMC was observed in the range of 25 nm to 5 mum of tension experiments. The results show that the spring constant of the CMC is reasonably proportional to the coil number. The shear modulus of the amorphous CMC is estimated to be 3 plusmn 0.2 GPa. The proposed method is promising to manipulate the compression and tension of the CMC and to measure the lateral force exerted in an ambient environment.  相似文献   

15.
16.
The linking of our macroscopic world to the nanoscopic world of single molecules, nanoparticles and functional nanostructures is a technological challenge. Researchers in nanobiotechnology face the questions “How extract and analyze a single nano‐object?”, “How to pick and place nano‐objects?” and “How to prototype a functional nanostructure?”. Here, nanomanipulation by an atomic force microscope (AFM) in combination with optical manipulation by a microbeam laser offers a practicable solution. In such a system, the AFM can be operated as a nanorobot for manipulation purposes allowing for nanometer precision. A contact free manipulation is achieved by the laser microbeam.  相似文献   

17.
We investigate the nanometer-scale flow of molten polyethylene from a heated atomic force microscope (AFM) cantilever tip during thermal dip-pen nanolithography (tDPN). Polymer nanostructures were written for cantilever tip temperatures and substrate temperatures controlled over the range 100-260?°C and while the tip was either moving with speed 0.5-2.0 μm s(-1) or stationary and heated for 0.1-100 s. We find that polymer flow depends on surface capillary forces and not on shear between tip and substrate. The polymer mass flow rate is sensitive to the temperature-dependent polymer viscosity. The polymer flow is governed by thermal Marangoni forces and non-equilibrium wetting dynamics caused by a solidification front within the feature.  相似文献   

18.
RS Gates  JR Pratt 《Nanotechnology》2012,23(37):375702
Accurate cantilever spring constants are important in atomic force microscopy both in control of sensitive imaging and to provide correct nanomechanical property measurements. Conventional atomic force microscope (AFM) spring constant calibration techniques are usually performed in an AFM. They rely on significant handling and often require touching the cantilever probe tip to a surface to calibrate the optical lever sensitivity of the configuration. This can damage the tip. The thermal calibration technique developed for laser Doppler vibrometry (LDV) can be used to calibrate cantilevers without handling or touching the tip to a surface. Both flexural and torsional spring constants can be measured. Using both Euler-Bernoulli modeling and an SI traceable electrostatic force balance technique as a comparison we demonstrate that the LDV thermal technique is capable of providing rapid calibrations with a combination of ease, accuracy and precision beyond anything previously available.  相似文献   

19.
基于SPM的超媒体人机接口   总被引:1,自引:0,他引:1  
当利用扫描隧道显微镜(SPM)作为一种纳米操作工具时,由于其缺乏实时的传感器信息反馈,而大大阻碍了它的广泛应用.利用超媒体人机交互接口可以解决这个问题.在纳米操作过程中,超媒体接口不但可以为操作者提供可实时更新的仿真操作场景,还可以通过力反馈手柄让操作者实时地感受到探针受到的三维纳米操作力.除此之外,操作者还可以通过该手柄直接控制探针的三维运动.最后在聚碳酸酯上进行了超媒体人机接口的纳米刻画实验.实验结果验证了该系统的有效性和效率.  相似文献   

20.
The tip of an atomic force microscope is used to create carbon nanotube junctions by changing the position and shape of individual single‐walled carbon nanotubes on a SiO2 surface. With this manipulation technique, we are able to bend, buckle, cross (see Figure), and break nanotubes, and to unravel a nanotube “crop circle” into a single tube. Tapping‐mode atomic force microscopy measurements of the height of a carbon nanotube on the surface always yield values smaller than the nanotube diameter. Variation of the scan parameters shows that this is due to a tapping deformation by the tip. The tapping deformation of manipulated nanotube crossings and buckles is discussed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号