首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two‐photon fluorescence microscopy, in combination with tetracycline labelling, was used to observe the remineralising potentials of a calcium silicate‐based restorative material (BiodentineTM) and a glass ionomer cement (GIC:?Fuji?IX) on totally demineralised dentine. Forty demineralised dentine discs were stored with either cement in three different solutions: phosphate buffered saline (PBS) with tetracycline, phosphate‐free tetracycline, and tetracycline‐free PBS. Additional samples of demineralised dentine were stored alone in the first solution. After 8‐week storage at 37 °C, dentine samples were imaged using two‐photon fluorescence microscopy and Raman spectroscopy. Samples were later embedded in PMMA and polished block surfaces studied by 20 kV BSE imaging in an SEM to study variations in mineral concentration. The highest fluorescence intensity was exhibited by the dentine stored with BiodentineTM in the PBS/tetracycline solution. These samples also showed microscopic features of matrix remineralisation including a mineralisation front and intra‐ and intertubular mineralisation. In the other solutions, dentine exhibited much weaker fluorescence with none of these features detectable. Raman spectra confirmed the formation of calcium phosphate mineral with Raman peaks similar to apatite, while no mineral formation was detected in the dentine stored in cement‐free or PBS‐free media, or with GIC. It could therefore be concluded that BiodentineTM induced calcium phosphate mineral formation within the dentine matrix when stored in phosphate‐rich media, which was selectively detectable using the tetracycline labelling.  相似文献   

4.
Specimen-induced aberrations cause a reduction in signal levels and resolution in fluorescence microscopy. Aberrations also affect the image contrast achieved by these microscopes. We model the effects of aberrations on the fluorescence signals acquired from different specimen structures, such as point-like, linear, planar and volume structures, when imaged by conventional, confocal and two-photon microscopes. From this we derive the image contrast obtained when observing combinations of such structures. We show that the effect of aberrations on the visibility of fine features depends upon the specimen morphology and that the contrast is less significantly affected in microscopes exhibiting optical sectioning. For example, we show that point objects become indistinguishable from background fluorescence in the presence of aberrations, particularly when imaged in a conventional fluorescence microscope. This demonstrates the significant advantage of using confocal or two-photon microscopes over conventional instruments when aberrations are present.  相似文献   

5.
Owing to the highly efficient two‐photon fluorescence of gold nanorods and very short fluorescence lifetime compared with the rotational correlation time, the rotation and diffusion of a single gold nanorod can be easily observed by two‐photon fluorescence correlation spectroscopy (TP‐FCS). This property, along with the previous successful use as a contrast agent in two‐photon fluorescence imaging, suggests a potential application in TP‐FCS as well. Although the FCS measurement becomes highly efficient with gold nanorods as probes, the amplitude and temporal decay of the measured correlation functions depend critically on excitation power. Here, we investigate various photophysical processes of gold nanorods to determine the cause of such a sensitive power dependency. This understanding provides a basis for choosing appropriate FCS models to recover reasonable physical parameters. Although the correlation function amplitude G(0) is 32 times lower when the excitation power increases from 20 µW to 1.12 mW, the application of a saturation‐modified FCS model yields very good fit to each data set and the fitted concentration of 0.64 nM is comparable to the 0.7 nM given by the inductively coupled plasma mass spectrometry measurement. The FCS assay appears to be an efficient method for the quantification of gold nanorods when correctly interpreted. However, even with the saturation considered in the fitting model, the fitted rotational and translational diffusion rates are getting faster as the power increases. This indicates that other effects such as photothermal effects may raise the local temperature, and thus increasing the rotational and translational diffusion rate. Microsc. Res. Tech. 76:882–889, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
We have developed a near‐video‐rate dual‐mode reflectance and fluorescence confocal microscope for the purpose of imaging ex vivo human specimens and in vivo animal models. The dual‐mode confocal microscope (DCM) has light sources at 488, 664 and 784 nm, a frame rate of 15 frames per second, a maximum field of view of 300 × 250 μm and a resolution limit of 0.31 μm laterally and 1.37 μm axially. The DCM can image tissue architecture and cellular morphology, as well as molecular properties of tissue, using reflective and fluorescent molecular‐specific optical contrast agents. Images acquired with the DCM demonstrate that the system has the sub‐cellular resolution needed to visualize the morphological and molecular changes associated with cancer progression and has the capability to image animal models of disease in vivo. In the hamster cheek pouch model of oral carcinogenesis, the DCM was used to image the epithelium and stroma of the cheek pouch; blood flow was visible and areas of dysplasia could be distinguished from normal epithelium using 6% acetic acid contrast. In human oral cavity tissue slices, DCM reflectance images showed an increase in the nuclear‐to‐cytoplasmic ratio and density of nuclei in neoplastic tissues as compared to normal tissue. After labelling tissue slices with fluorescent contrast agents targeting the epidermal growth factor receptor, an increase in epidermal growth factor receptor expression was detected in cancerous tissue as compared to normal tissue. The combination of reflectance and fluorescence imaging in a single system allowed imaging of two different parameters involved in neoplastic progression, providing information about both the morphological and molecular expression changes that occur with cancer progression. The dual‐mode imaging capabilities of the DCM allow investigation of both morphological changes as well as molecular changes that occur in disease processes. Analyzing both factors simultaneously may be advantageous when trying to detect and diagnose disease. The DCM's high resolution and near‐video‐rate image acquisition and the growing inventory of molecular‐specific contrast agents and disease‐specific molecular markers holds significant promise for in vivo studies of disease processes such as carcinogenesis.  相似文献   

7.
Background : Multifunctional two‐photon laser scanning microscopy provides attractive advantages over conventional two‐photon laser scanning microscopy. For the first time, simultaneous measurement of the second harmonic generation (SHG) signals in the forward and backward directions and two photon excitation fluorescence were achieved from the deep shade plant Selaginella erythropus. Results : These measurements show that the S. erythropus leaves produce high SHG signals in both directions and the SHG signals strongly depend on the laser's status of polarization and the orientation of the dipole moment in the molecules that interact with the laser light. The novelty of this work is (1) uncovering the unusual structure of S. erythropus leaves, including diverse chloroplasts, various cell types and micromophology, which are consistent with observations from general electron microscopy; and (2) using the multifunctional two‐photon laser scanning microscopy by combining three platforms of laser scanning microscopy, fluorescence microscopy, harmonic generation microscopy and polarizing microscopy for detecting the SHG signals in the forward and backward directions, as well as two photon excitation fluorescence. Conclusions : With the multifunctional two‐photon laser scanning microscopy, one can use noninvasive SHG imaging to reveal the true architecture of the sample, without photodamage or photobleaching, by utilizing the fact that the SHG is known to leave no energy deposition on the interacting matter because of the SHG virtual energy conservation characteristic.  相似文献   

8.
The detection of mitochondrial DNA (mtDNA) in living human cells could be useful for understanding mitochondrial behaviour during cellular processes and pathological mtDNA depletions. However, until now, human mtDNA has not been visualized in living cells with fluorescence microscopy, although it has been easily detected in organisms with larger mtDNA. Previous reports have stated that mtDNA staining results in homogeneous fluorescence of mitochondria or that animal mitochondria are refractory to DAPI staining. This paper shows that mtDNA of cultured green monkey kidney CV-1 can be stained using a very low concentration of DAPI, then detected by a cooled Photometrics CCD camera with 14-bit resolution detection. Indeed, under these conditions CV-1 cells have small fluorescent spots in the cytoplasm that colocalize with mitochondria, even after mitochondrial movements, uncoupling by carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone and swelling. These observations have been reproduced for the human fibroblast foreskin cell line HS68. These results and known properties of DAPI as a specific DNA stain strongly suggest that mtDNA can be detected and visualized by fluorescence microscopy in human living cells, with potential developments in the study of mtDNA in normal and pathological situations.  相似文献   

9.
Dynamic changes in the spatial distribution of chloroplasts are essential for optimizing photosynthetic capacity under changing light conditions. Light‐induced movement of chloroplasts has been widely investigated, but most studies were conducted on isolated tissues or protoplasts. In this study, a two‐photon microscopy (TPM) system was adapted to monitor the intracellular 3‐dimensional (3D) movements of chloroplasts in intact leaves of plants during dark to light transitions. The TPM imaging was based on autofluorescence of chlorophyll generated by a femto‐second Ti:Sapphire laser. All chloroplasts did not exhibit the same motion in response to irradiation variation. In the sub‐epidermal mesophyll cells, chloroplasts generally moved away from the surface following blue light treatment, however many chloroplasts did not show any movement. Such spatial heterogeneity in chloroplast motility underlines the importance of monitoring intracellular orientation and movement of individual chloroplasts across intact leaves. Our investigation shows that the 3D imaging of chloroplasts using TPM can help to understand the changes in local photosynthetic capacity in intact leaves under changing environmental conditions. Microsc. Res. Tech. 77:806–813, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

10.
We propose an innovative experimental approach to estimate the two‐photon absorption (TPA) spectrum of a fluorescent material. Our method develops the standard indirect fluorescence‐based method for the TPA measurement by employing a line‐shaped excitation beam, generating a line‐shaped fluorescence emission. Such a configuration, which requires a relatively high amount of optical power, permits to have a greatly increased fluorescence signal, thus avoiding the photon counterdetection devices usually used in these measurements, and allowing to employ detectors such as charge‐coupled device (CCD) cameras. The method is finally tested on a fluorescent isothiocyanate sample, whose TPA spectrum, which is measured with the proposed technique, is compared with the TPA spectra reported in the literature, confirming the validity of our experimental approach.  相似文献   

11.
In this study, a two‐photon fluorescence microscopic imaging technique is reported for assessment the effect of dynamic hypertonic environment on the overall energy metabolism alteration and adaptation of soil‐living amoeba Dictyostelium discoideum. For that purpose the fluorescence intensity of mitochondrial reduced nicotinamide adenine dinucleotide (NADH) was monitored and quantified in order to evaluate the corresponded metabolic state of monolayer cultured cells. The two‐photon excitation of NADH with 720 nm near infrared irradiation produced blue fluorescence emission with maximum wavelength centered at 460 nm. The benefits of reported noninvasive microscopic technique are the significantly less cellular damage and avoiding the excitation of other biomolecules except of NADH. It enabled to acquire data for NADH levels of the observed cells on agar plate specimen and hypertonic nutrition media in a Petri dish. The method demonstrated also good sensitivity, reproducibility and the obtained results revealed that D. discoideum species form aggregation in hypertonic environment within several minutes with aim to survive. The formed aggregate had amorphous shape and it consisted from dozen amoeba cells, which kept their NADH amount in constant level for few hours. The reported imaging method might be applicable in various studies for characterization of metabolic events and assessment of the cell energy balance in hypertonic environment.  相似文献   

12.
The characterization of internal structures in a polymeric microfluidic device, especially of a final product, will require a different set of optical metrology tools than those traditionally used for microelectronic devices. We demonstrate that optical coherence tomography (OCT) imaging is a promising technique to characterize the internal structures of poly(methyl methacrylate) devices where the subsurface structures often cannot be imaged by conventional wide field optical microscopy. The structural details of channels in the devices were imaged with OCT and analyzed with an in‐house written ImageJ macro in an effort to identify the structural details of the channel. The dimensional values obtained with OCT were compared with laser‐scanning confocal microscopy images of channels filled with a fluorophore solution. Attempts were also made using confocal reflectance and interferometry microscopy to measure the channel dimensions, but artefacts present in the images precluded quantitative analysis. OCT provided the most accurate estimates for the channel height based on an analysis of optical micrographs obtained after destructively slicing the channel with a microtome. OCT may be a promising technique for the future of three‐dimensional metrology of critical internal structures in lab‐on‐a‐chip devices because scans can be performed rapidly and noninvasively prior to their use.  相似文献   

13.
Multiphoton fluorescence excitation microscopy is almost invariably conducted with samples whose refractive index differ from that of the objective immersion medium, conditions that cause spherical aberration. Due to the quadratic nature of multiphoton fluorescence excitation, spherical aberration is expected to profoundly affect the depth dependence of fluorescence excitation. In order to determine the effect of refractive index mismatch in multiphoton fluorescence excitation microscopy, we measured signal attenuation, photobleaching rates and resolution degradation with depth in homogeneous samples with minimal light scattering and absorption over a range of refractive indices. These studies demonstrate that signal levels and resolution both rapidly decline with depth into refractive index mismatched samples. Analyses of photobleaching rates indicate that the preponderance of signal attenuation with depth results from decreased rates of fluorescence excitation, even in a system with a descanned emission collection pathway. Similar results were obtained in analyses of fluorescence microspheres embedded in rat kidney tissue, demonstrating that spherical aberration is an important limiting factor in multiphoton fluorescence excitation microscopy of biological samples.  相似文献   

14.
15.
Three-dimensional (3-D) imaging of fluorescence resonance energy transfer (FRET) in human cells under two-photon excitation was demonstrated in this study. A sample was prepared by expressing a donor and an acceptor in living cells and using an antibody to secure the proximity of contact between the donor and the acceptor. The quenching of fluorescence emission of a donor in the double-labelled cells indicates the presence of FRET that occurred in these living cells. Because of the quadratic relation of the excitation power, 3-D localisation of FRET becomes possible.  相似文献   

16.
Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field‐of‐view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold‐labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium‐tin‐oxide was deposited by ion‐sputtering on gold‐decorated HeLa cells and neurons. Indium‐tin‐oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold‐conjugated markers. Microsc. Res. Tech. 78:433–443, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
The morphology of mitochondria can inform about their functional state and, thus, about cell vitality. For example, fragmentation of the mitochondrial network is associated with many diseases. Recent advances in neuronal imaging have enabled the observation of mitochondria in live brains for long periods of time, enabling the study of their dynamics in animal models of diseases. To aid these studies, we developed an automatic method, based on supervised learning, for quantifying the degree of mitochondrial fragmentation in tissue images acquired via two‐photon microscopy from transgenic mice, which exclusively express Enhanced cyan fluorescent protein (ECFP) under Thy1 promoter, targeted to the mitochondrial matrix in subpopulations of neurons. We tested the method on images prior to and after cardiac arrest, and found it to be sensitive to significant changes in mitochondrial morphology because of the arrest. We conclude that the method is useful in detecting morphological abnormalities in mitochondria and, likely, in other subcellular structures as well.  相似文献   

18.
Multiphoton microscopy is widely employed in the life sciences using extrinsic fluorescence of low‐ and high‐molecular weight labels with excitation and emission spectra in the visible and near infrared regions. For imaging of intrinsic and extrinsic fluorophores with excitation spectra in the ultraviolet region, multiphoton excitation with one‐ or two‐colour lasers avoids the need for ultraviolet‐transmitting excitation optics and has advantages in terms of optical penetration in the sample and reduced phototoxicity. Excitation and detection of ultraviolet emission around 300 nm and below in a typical inverted confocal microscope is more difficult and requires the use of expensive quartz optics including the objective. In this technical note we describe the adaptation of a commercial confocal microscope (Nikon, Japan E‐C1 or E‐C2) for versatile use with Ti‐sapphire and OPO laser sources and the addition of a second detection channel that enables detection of ultraviolet fluorescence and increases detection sensitivity in a typical fluorescence lifetime imaging microscopy experiment. Results from some experiments with this setup illustrate the resulting capabilities.  相似文献   

19.
A major challenge of cancer biology is to visualize the dynamics of the metastatic process in secondary organs at high optical resolution in vivo real-time. Here, we presented intravital, dual-colored imaging of liver metastasis formation from a single cancer cell to metastatic colonies in the living liver of living mice using two photon laser scanning microscopy (TPLSM). Red fluorescent protein expressing murine (SL4) or human (HT29) colorectal cancer cell lines were inoculated to the spleen of green fluorescent protein expressing mice. Intravital TPLSM was performed by exteriorizing and fixing the liver lobe of living mice. This was repeated several times for the long-term imaging of the same mouse. Viable cancer cells in the living liver of living mice were visualized intravitally at a magnification of over 600×. Single cancer cells were arrested within hepatic sinusoids 2 h after injection. Platelet aggregation surrounding a cancer cell was observed, indicating a phenomenon of tumor-cell induced platelet aggregation. Cancer cells were extravasated from hepatic sinusoids to the space of Disse. Protrusions of Kupffer cells surrounding a cancer cell were observed, indicating that Kupffer cells appear to phagocytose cancer cells. SL4 cells formed liver metastatic colonies with extensive stromal reaction. Liver metastases by HT29 cells were observed as a cluster of micrometastatic nodules. High-resolution, dual-colored, real-time visualization of cancer metastasis using intravital TLPSM can help to understand spatiotemporal tumor-host interactions during metastatic processes in the living organs of living animals.  相似文献   

20.
Three‐dimensional (3D) morphometric analysis of cellular and subcellular structures provides an effective method for spatial cell biology. Here, 3D cellular and nuclear morphologies are reconstructed to quantify and compare morphometric differences between normal and apoptotic endothelial cells. Human umbilical vein endothelial cells (HUVECs) are treated with 60 μM H2O2 to get apoptotic cell model and then a series of sectional images are acquired from laser scanning confocal microscopy. The 3D cell model containing plasma membrane and cell nucleus is reconstructed and fused utilizing three sequential softwares or packages (Mimics, Geomagic, and VTK). The results reveal that H2O2 can induce apoptosis effectively by regulating the activity of apoptosis‐related biomolecules, including pro‐apoptotic factors p53 and Bax, and anti‐apoptotic factor Bcl‐2. Compared with the normal HUVECs, the apoptotic cells exhibit significant 3D morphometric parameters (height, volume and nucleus‐to‐cytoplasm ratio) variation. The present research provides a new perspective on comparative quantitative analysis associated with cell apoptosis and points to the value of LSCM as an objective tool for 3D cell reconstruction. Microsc. Res. Tech. 76:1154–1162, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号