首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mass transfer kinetics during osmotic dehydration of pomegranate arils in osmotic solution of sucrose was studied to increase palatability and shelf life of arils. The freezing of the whole pomegranate at -18 °C was carried out prior to osmotic dehydration to increase the permeability of the outer cellular layer of the arils. The osmotic solution concentrations used were 40, 50, 60°Bx, osmotic solution temperatures were 35, 45, 55 °C. The fruit to solution ratio was kept 1:4 (w/w) during all the experiments and the process duration varied from 0 to 240 min. Azuara model and Peleg model were the best fitted as compared to other models for water loss and solute gain of pomegranate arils, respectively. Generalized Exponential Model had an excellent fit for water loss ratio and solute gain ratio of pomegranate arils. Effective moisture diffusivity of water as well as solute was estimated using the analytical solution of Fick's law of diffusion. For above conditions of osmotic dehydration, average effective diffusivity of water loss and solute gain varied from 2.718 × 10(-10) to 5.124 × 10(-10) m(2)/s and 1.471 × 10(-10) to 5.147 × 10(-10) m(2)/s, respectively. The final product was successfully utilized in some nutritional formulations such as ice cream and bakery products.  相似文献   

2.
Osmotic dehydration of mango in sucrose solution as influenced by temperature (30–50 °C), immersion time (60–150 min) and solution concentration (40–60% w/w) was studied through response surface methodology. Responses of water loss and solid gain were fitted to polynomials, with multiple correlation coefficients ranging from 0.72 to 0.95, respectively. The fitted functions were optimised for maximum water loss and minimised incorporation of solids in order to obtain a product resembling non-processed fruit. Optimum conditions to obtain water removal >25% with solid uptake lower than 6% could be obtained using a 44% (w/w) sucrose solution concentration, temperatures up to 38 °C and immersion times up to 80 min.  相似文献   

3.
Slices (1.5 mm thick) of green papaya were impregnated through osmotic dehydration with a blackberry juice–sucrose solution to produce an intermediate moisture product. The effect of processing temperature (T) and sucrose-added molality (msucrose) on mass transfer during the operation was assessed, using a response surface methodology (RSM). The RSM was used to model water loss, sugar and anthocyanin gain during the process. Increasing sucrose molality resulted in increasing water loss and sugar gain, but decreasing anthocyanin gain. Water transfer therefore limits anthocyanin impregnation, but not sucrose incorporation. Afterwards, the impact of heat treatment at high temperatures was analysed, using numerical simulation. The conditions of the combined process, designed to achieve an anthocyanin-rich final product, are low sucrose-added molalities (sucrose molality < 1 mol kg–1) and high processing temperatures (> 50 ºC) for osmotic dehydration, coupled with high-temperature, short-time (HTST) heat treatments for product stabilisation.  相似文献   

4.
Fodder palm, a great source of nutrients for human and animals, grows even in arid climates. Pulsed vacuum osmotic dehydration is an efficient process for obtaining semidehydrated food. It was used to slice cladodes of fodder palm. The independent variables used were temperature (30–50 °C), pulsed vacuum pressure (50–150 mbar) and NaCl concentration (5–15 g per 100 g solution). The response variables were water activity (aw), moisture content (X), colour parameters, water loss (WL), solid gain (SG) and weight reduction (WR). The pulsed vacuum osmotic dehydration process was optimised for minimum values of aw, X and SG, and maximum values of chroma. The experimental data obtained with the optimum condition (100 mbar; 10 gNaCl per 100 g solution, 44 °C) were near the estimated ones. For example, WL, aw and ?E, and their error were 8.15 g per 100 g, 11%; 0.985, 0.3% and 6.15, 15.2%, respectively.  相似文献   

5.
Response surface methodology (RSM) of Box–Behnken design with 27 experimental runs and the desirability function method were used in the osmotic dehydration process of Chinese ginger (Zingiber officinale Roscoe) slices in ternary solution of water, sucrose and sodium chloride for maximising water loss (WL), rehydration ratio (RR) and total phenolic content (TPC) and minimising solute gain (SG) and hunter colour change (HCC) of dehydrated product. The results indicated that the optimum operating conditions were found to be process duration of 102 min, solution temperature of 30 °C, solution concentration of 50 Brix sucrose + 7.31% sodium chloride and solution to food ratio of 8:1 (w/w). Under this condition, the WL, SG and TPC were 58.8% (wb), 12.56% (wb) and 1.46% (db), while its RR and HCC were 1.59 and 6.55, respectively. The immersion time was the most significant variable for WL, HCC, SG and RR, and for TPC it was temperature (P < 0.05).  相似文献   

6.
7.
In the optimisation of the osmotic dehydration process of the carrot cubes in mixtures of sucrose and sodium chloride by response surface methodology, using face-centred central composite design (CCF), it was shown that the independent process variables for osmotic dehydration process were osmotic solution concentrations (5–15% w/v sodium chloride in 50 °Brix sucrose syrup), temperature (35–55 °C) and process duration (120–240 min). Statistical analysis of results showed that the linear terms of all the process variables have a significant effect on all the responses. The optimum osmotic dehydration process conditions for maximum water loss, minimum solute gain, maximum retention of colour, and sensory score were: 50 °Brix + 15% w/v sodium chloride solution, 54.8 °C solution temperature and 120 min process duration.  相似文献   

8.
Osmotic dehydration of carrot cubes in ternary solution of water, sucrose and sodium chloride at different solution concentrations, temperatures and process durations were analysed for water loss and solute gain during osmotic dehydration. The osmotically pre-treated carrot cubes were further dehydrated in a cabinet dryer at 65 °C and were then rehydrated in water at ambient temperature of water for 10–12 h and were analysed for rehydration ratio, shrinkage and overall acceptability after rehydration. The process was optimised for maximum water loss, rehydration ratio and overall acceptability of the rehydrated product, and for minimum solute gain and shrinkage of rehydrated product by response surface methodology. The optimum conditions of various process parameters are 50°B+10% w/v aqueous sodium chloride concentration, 46.5 °C solution temperature and 180 min process duration.  相似文献   

9.
10.
Optimization of osmotic dehydration of melons followed by air-drying   总被引:1,自引:0,他引:1  
Osmotic dehydration represents a technological alternative to reduce post‐harvest losses of fruits. In this work, the influence of the osmotic solution concentration and osmotic solution to fruit weight ratio was examined on the osmotic dehydration of melons under vacuum. The process of osmotic dehydration followed by air‐drying was studied and modelled so that it could be optimised. The developed model has been validated with experimental data and simulations have shown that how the operating conditions affect the process. An optimisation was done using the model in order to search for the best operating condition that would reduce the total processing time.  相似文献   

11.
Response surface methodology was used to assess the effects of osmotic solution concentration (40–60°Brix), process temperature (20–40 °C) and vacuum pulse application time (0–20 min) at 100 mbar on water loss (WL), weight reduction (WR), solid gain (SG), water activity (aw), colour parameters and mechanical properties of guava slices. Optimal process conditions were determined through the desirability function approach and quality characteristics of osmotically dehydrated guavas were analysed. Only models obtained for WL, WR and aw were suitable to describe the experimental data. The desirability function showed that optimal conditions for osmotic dehydration of guavas were: osmotic solution concentration at 60°Brix, process temperature at 32 °C and 20 min of vacuum pulse application. Under optimal conditions, colour and mechanical properties of treated guavas were similar to fresh fruit, presenting WL of 29.01 g/100 g, WR of 25.91 g/100 g, SG of 3.10 g/100 g and aw of 0.979.  相似文献   

12.
Osmotic dehydration of pomegranate seeds was carried out at different temperatures (30, 40, 50 °C) in a 55°Brix solution of sucrose, glucose, and mixture sucrose & glucose (50:50, w/w). The most significant changes of water loss and solids gain took place during the first 20 min of dewatering. During this period, seeds water loss was estimated to 46% in sucrose, 37% in glucose and 41% in mix glucose/sucrose solution. The increase of temperature favoured the increase of water loss, weight reduction, solids gain and effective diffusivity. Differential scanning calorimetry data provided complementary information on the mobility changes of water and solute in osmodehydrated pomegranate seeds. The ratio between % frozen water and % unfreezable water decreased from 5 to 0.5 during the process. That involving the presence of very tightly bound water to the sample, which is very difficult to eliminate with this process. It also appeared that glass transition temperature depends on the types of sugar.  相似文献   

13.
The objective of the present work was to evaluate the combined effect of the application of edible coatings (sodium alginate and low methoxyl pectin) and different osmotic dehydration conditions (sucrose solution: 40 and 60 °Brix, temperatures: 20 and 40°C and times: 1, 2, 4, 8 and 16 h) on pear cubes (water loss, solid gain, performance ratio, the total colour differences, mechanical properties, phenolic content and sensory analysis). The results indicated that samples coated with low methoxyl pectin and treated under 60 °Brix for 16 h at both temperatures (20 and 40°C) presented the best process performance. Statistical analysis showed that the application of the coatings resulted in greater firmness and stiffness of the pear cubes at the end of osmotic dehydration. Besides, alginate coating best preserved the phenolic content (31.4%) than uncoated (26.04%) and pectin-coated (20.77%) ones. However, total colour differences were not improved with the use of edible coatings (alginate or pectin). In terms of quality, the samples coated with both hydrogels had good overall acceptability by the evaluators and good mechanical properties. However, further studies are required to decrease the difference in colour and leaching of bioactive compounds in pear cubes due to the osmotic dehydration treatment.  相似文献   

14.
以石榴渣为实验原料,优化石榴渣多酚提取的工艺,并研究它的抗氧化性质。在单因素实验的基础上,利用响应面分析法(Response Surface Methodology,RSM)中的中心组合设计对石榴渣多酚的提取条件进行优化。用传统的溶剂提取法提取石榴渣中的多酚类物质,并利用福林酚法测定其含量。其抗氧化性用DPPH自由基清除能力和还原能力来评价。结果表明,最佳的石榴渣提取工艺条件是:41%的乙醇作溶剂,液料比20 m L/g,在62℃下提取3.5 h时多酚的得率最大为4.88 mg GAE/g,与预测值5.034 mg GAE/g接近。石榴渣多酚有较强的DPPH自由基清除率,且总抗氧化性与提取的石榴渣多酚浓度呈正相关,相关系数为0.9988。   相似文献   

15.
Mass transfer kinetics and optimisation of osmotic dehydration (OD) of fruits and vegetables with diverse structures were studied. Different concentrations of sucrose (20–60 °Brix) and process times (0–24 h) were used. Magee’s model was appropriate for predicting water loss (WL), while Azuara’s model fitted well solids gain (SG) data and represented more accurately the evolution of the complete process close to equilibrium. Polynomial equations for each kinetic variable [WL, SG and weight reduction (WR) – for pumpkin, kiwi and pear] using multiple linear regression were fitted for a selected range of experimental data (30–240 min, 20–60 °Brix). A complete solution algorithm for desirability function was coded in Matlab® 7.2 (Mathworks, Natick, MA, USA) with the aim to optimise osmotic dehydration process in terms of WL, SG and WR; optimal conditions were found for each fruit. Besides, an optimal common zone was identified for OD corresponding to process time from 114 to 240 min and sucrose concentration from 54 to 60 °Brix.  相似文献   

16.
The water status, texture properties, sugars, and total carotenoid of dehydrated yellow peach slices pretreated with or without osmotic dehydration (OD) combined with heat pump drying were studied. In this study, different osmotic agents were used, namely, sucrose and isomaltooligosaccharide (IMO) with 30 °Brix for 1, 3, and 5 h. Results showed that the dehydrated samples pretreated by sucrose-OD with the best shape and cell structure showed lower hardness compared to the dehydrated yellow peach slices with IMO-OD pretreatment and without OD pretreatment. Notably, the highest total carotenoid content was found in dehydrated yellow peach slices pretreated by IMO-OD, followed by samples without OD, and samples with sucrose-OD pretreatment. In addition, the lowest aW (0.517) was obtained in samples with IMO-OD for 5 h, which was beneficial for storage. The assessment of water status and total carotenoid content of dehydrated yellow peach slices showed that IMO-OD pretreatment could better improve the quality of dehydrated fruits. Moreover, the use of IMO in OD treatment was a good alternative to sucrose.  相似文献   

17.
Pulsed vacuum osmotic dehydration (PVOD) is an efficient process for obtaining semi‐dehydrated food. The effects of temperature (30–50°C), solute concentration (NaCl 0–15 kg per 100 kg solution, sucrose, 15–35 kg per 100 kg solution) and vacuum pulse application (50–150 mbar and 5–15 min) on water loss (WL), solid gain (SG), water activity (aw) and total colour difference (?E) of previously blanched pumpkin slices were assessed through Plackett–Burman experimental design. Temperature was not statistically significant in the process. Later, with the aid of a central composite design (CCD), it was found that concentration of sucrose and NaCl was influent on the WL, SG, aw and ?E, and the pressure and time of application of vacuum were influent on WL and SG. The optimal conditions of process were stabilised with the desirable function, and the simulated data were similar from the experimental ones.  相似文献   

18.
The objective of this work was to study osmotic dehydration (OD) of the Indian fig with two binary solutions (sucrose/water and glucose/water) and a ternary solution (sucrose/NaCl/water) according to a 23 factorial design with independent variables: temperature (30–50 °C), immersion time (90–240 min) and concentration (40–60 °Brix). The dependent variables were water loss (WL), solid gain (SG) and dehydration efficiency index. The temperature had greater influence on the WL in the three hypertonic solutions studied; the concentration had greater influence on the SG in the three hypertonic solutions investigated and the best conditions for the OD of the Indian fig were in glucose solution at 40 °Brix, 40 °C and 165 min.  相似文献   

19.
Water loss (WL), solid gain (SG), weight reduction (WR) and shrinkage were quantitatively investigated during osmotic dehydration of plum using response surface methodology with the sucrose concentration (30–60g/100 g sample), temperature of sucrose solution (40–60°C) and immersion time (60–240 min). Experiments were designed according to Central Composite Rotatable Design with these three factors. For each response, second order polynomial models were developed using multiple linear regression analysis. With respect to water loss, solid gain, weight reduction and shrinkage, both linear and quadratic effects of four variables were found to be significant. In most cases, an increase of sucrose concentration, temperature and immersion time increased WL, SG, WR and shrinkage, except the increasing of immersion time for osmotic treatment has no effect on shrinkage. It was found that immersion time and temperature were the most significant factors affecting the WL during osmotic dehydration of plum followed by concentration of sucrose solution. This was also true for WR. Effect of temperature and time were more pronounced for SG than the concentration of sucrose solution.  相似文献   

20.
M. Ozdemir  Banu F. Ozen  John D. Floros 《LWT》2008,41(10):2044-2050
Osmotic dehydration of diced green peppers was optimized with respect to temperature (20-40 °C), time (15-600 min), salt (0-10 g/100 g) and sorbitol (0-10 g/100 g) concentrations through response surface methodology. Water loss (WL), solids gain (SG), salt uptake (SA) and sorbitol uptake (SO) were the responses in a 24 central composite rotatable design. Models developed for all responses were significant (p ≤ 0.01) without significant lack of fit. Results suggested that optimum processing conditions of 5.5 g salt/100 g and 6 g sorbitol/100 g at 30 °C after 240 min would result in WL = 23.3%, SG = 4.1%, SA = 8 g/100 g dry pepper and SO = 2.4 g/100 ml extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号