首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We investigated the effect of fermenting milk with 2 strains (DGCC7785 and St-143) of Streptococcus thermophilus, which are known to produce different types of exopolysaccharide (EPS) structures. The yields and physical properties of these ropy EPS were monitored during the fermentation of milk at different temperatures. We wanted to understand how these types of EPS properties affected yogurt gelation. Reconstituted skim milk was fermented at 33, 39, or 45°C until pH values reached 5.2, 4.9, 4.7, and 4.5. Molar mass of ropy EPS samples was determined using size exclusion chromatography coupled with multiangle laser light scattering. Rheological properties of fermented milk gels were analyzed using small-strain dynamic oscillatory measurements. In both strains, concentrations of ropy EPS increased during fermentation and at all temperatures. Fermentation times, by both strains, were shortest at 45°C and longest at 33°C. For both strains, molar mass of ropy EPS ranged from 2 to 4 × 106 g/mol during fermentation. A major proteinaceous contaminant that was co-isolated with the ropy EPS fraction by our isolation method was identified as a milk-derived phosphoglycoprotein PP3. Increase in fermentation temperature from 33 to 45°C significantly decreased the storage modulus values (from 170 to 41 Pa) for milk gelled by strain DGCC7785, whereas the gels made with St-143 had very low storage modulus values (11–17 Pa) regardless of fermentation temperatures. For both strains, the values of maximum loss tangent in the milk gels increased with fermentation temperature; the maximum loss tangent occurred at higher pH values when milk was fermented by strain DGCC7785. The specific type of EPS produced appeared to be responsible for the differences in yogurt texture rather than the concentration or molar mass of the EPS.  相似文献   

2.
The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus (St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography–multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ~150 min, which corresponded to pH ~5.3, which was close to the point of gelation. During the remainder of the fermentation process (150–270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ~60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 106 and 1.4 × 106 g/mol, respectively, which decreased to 1.6 × 106 and 0.8 × 106 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels fermented by the 2 strains. At the end of fermentation, St-143 fermented milk had weaker gels with storage modulus (G′) value at pH 4.6 of 26 Pa, whereas gels made with ST-10255y were stiffer with a G′ value at pH 4.6 of 82 Pa. For St-143 gels, maximum loss tangent (LTmax) values were higher (0.50) and occurred earlier (at a higher pH value) than the LTmax values (0.46) for gels from ST-10255y strain. Because the fermentation conditions were identical for both strains, the observed changes in rheological properties could be due to the differences in chemical structures and molar mass of the EPS produced by these 2 S. thermophilus strains.  相似文献   

3.
Relationships between exopolysaccharide (EPS) production (amount, molecular mass and sugar composition of the EPS) by different Streptococcus thermophilus strains as a functional starter culture, and textural characteristics (viscosity) of fermented milk and yoghurt have been studied. Five interesting heteropolysaccharide-producing strains have been tested. Both S. thermophilus LY03 and S. thermophilus CH101 produced the highest amounts of EPS and also displayed the highest apparent viscosities in fermented milk. S. thermophilus ST 111 and S. thermophilus STD differed considerably in EPS yields, but not in apparent viscosities of fermented milk. In addition, S. thermophilus ST 111 displayed a high variability in EPS amounts when cultivated in milk. In milk medium, S. thermophilus LY03 produced two heteropolysaccharides, a high-molecular-mass (HMM) EPS and a low-molecular-mass (LMM) EPS of the same composition (Gal/Glu/GalNAc=3.4:1.4:1.0). S. thermophilus ST 111 produced only a HMM-EPS (Gal/Rha=2.5:1.0), while S. thermophilus CH 101 (Gal/Glu=1.0:1.0), S. thermophilus ST 113 (Gal/Glu/Rha/GalNAc=1.7:3.9:1.5:1.0) and S. thermophilus STD (Gal/Glu/Rha/GalNAc=3.5:6.2:1.2:1.0) produced only LMM-EPS. Both HMM-EPS and LMM-EPS solutions (S. thermophilus LY03) demonstrated a pseudoplastic character; HMM-EPS solutions of 0.2% (m/v) displayed a high consistency as well. Although its production of high EPS amounts, S. thermophilus LY03 resulted in relatively thin yoghurts, so that texture values did not directly correlate with EPS production capacity. Once structure/function relationships are known, one can determine the molecular properties of the isolated and purified EPS (molecular size, structural characteristics) from candidate strains to predict their potential in texture formation. For a final selection of interesting EPS-producing starter strains one should test the EPS production under yoghurt manufacturing conditions.  相似文献   

4.
The extracellular polysaccharides (EPS) produced by lactic acid bacteria (LAB) are associated with the rheology, texture, and mouthfeel of fermented milk products, including yogurt. This study investigated the immunomodulatory effects of EPS purified from the culture supernatant of Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) OLL1073R-1. The crude EPS were prepared from the culture supernatant of L. bulgaricus OLL1073R-1 by standard chromatographic methods, and were fractionated into neutral EPS and acidic EPS (APS). Acidic EPS were further fractionated into high molecular weight APS (H-APS) and low molecular weight APS (L-APS). High molecular weight APS were shown to be phosphopolysaccharides containing D-glucose, D-galactose, and phosphorus. Stimulation of mouse splenocytes by H-APS significantly increased interferon-γ production, and, moreover, orally administered H-APS augmented natural killer cell activity. Oral administration of yogurt fermented with L. bulgaricus OLL1073R-1 and Streptococcus thermophilus OLS3059 to mice showed a similar level of immunomodulation as H-APS. However, these effects were not detected following administration of yogurt fermented with the starter combination of L. bulgaricus OLL1256 and S. thermophilus OLS3295. We conclude from these findings that yogurt fermented with L. bulgaricus OLL1073R-1, containing immunostimulative EPS, would have an immunomodulatory effect on the human body.  相似文献   

5.
Yogurt starter cultures may consist of multiple strains of Lactobacillus delbrueckii ssp. bulgaricus (LB) and Streptococcus thermophilus (ST). Conventional plating methods for monitoring LB and ST levels during yogurt manufacture do not allow for quantification of individual strains. The objective of the present work was to develop a quantitative PCR method for quantification of individual strains in a commercial yogurt starter culture. Strain-specific primers were designed for 2 ST strains (ST DGCC7796 and ST DGCC7710), 1 LB strain (DGCC4078), and 1 Lactobacillus delbrueckii ssp. lactis strain (LL; DGCC4550). Primers for the individual ST and LB strains were designed to target unique DNA sequences in clustered regularly interspersed short palindromic repeats. Primers for LL were designed to target a putative mannitol-specific IIbC component of the phosphotransferase system. Following evaluation of primer specificity, standard curves relating cell number to cycle threshold were prepared for each strain individually and in combination in yogurt mix, and no significant differences in the slopes were observed. Strain balance data was collected for yogurt prepared at 41 and 43°C to demonstrate the potential application of this method.  相似文献   

6.
This work reports on the physicochemical characterization of 21 exopolysaccharides (EPS) produced by Lactobacillus and Bifidobacterium strains isolated from human intestinal microbiota, as well as the growth and metabolic activity of the EPS-producing strains in milk. The strains belong to the species Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus plantarum, Lactobacillus vaginalis, Bifidobacterium animalis, Bifidobacterium longum, and Bifidobacterium pseudocatenulatum. The molar mass distribution of EPS fractions showed 2 peaks of different sizes, which is a feature shared with some EPS from bacteria of food origin. In general, we detected an association between the EPS size distribution and the EPS-producing species, although because of the low numbers of human bacterial EPS tested, we could not conclusively establish a correlation. The main monosaccharide components of the EPS under study were glucose, galactose, and rhamnose, which are the same as those found in food polymers; however, the rhamnose and glucose ratios was generally higher than the galactose ratio in our human bacterial EPS. All EPS-producing strains were able to grow and acidify milk; most lactobacilli produced lactic acid as the main metabolite. The lactic acid-to-acetic acid ratio in bifidobacteria was 0.7, close to the theoretical ratio, indicating that the EPS-producing strains did not produce an excessive amount of acetic acid, which could adversely affect the sensory properties of fermented milks. With respect to their viscosity-intensifying ability, L. plantarum H2 and L. rhamnosus E41 and E43R were able to increase the viscosity of stirred, fermented milks to a similar extent as the EPS-producing Streptococcus thermophilus strain used as a positive control. Therefore, these human EPS-producing bacteria could be used as adjuncts in mixed cultures for the formulation of functional foods if probiotic characteristics could be demonstrated. This is the first article reporting the physicochemical characteristics of EPS isolated from human intestinal microbiota.  相似文献   

7.
8.
Lactic acid bacteria (LAB) were isolated from traditional yogurt samples and genotypic characterization of these isolates revealed the presence of 21 distinct LAB strains belonging to Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Leuconostoc mesenteroides, and Lactobacillus plantarum as new LAB strains. Determination of the exopolysaccharide (EPS) production characteristics of the selected strains of each species revealed that all strains possessed at least one gene required for both homopolymeric‐ and heteropolymeric‐type EPS production. Structural analysis of the EPSs showed that L. delbrueckii subsp. bulgaricus Y39 and S. thermophilus Y102 produced heteropolymeric EPS containing glucose and galactose, whereas Leuc. mesenteroides Y35 and L. plantarum Y36 produced homopolymeric glucan‐type EPS. The level of EPS production in these strains was found to be in a similar range. These strains with EPS production characteristics are good candidates for future studies as new LAB for yogurt production.

Practical applications

Recent trends in yogurt production technology have led to an increased use of ropy starter cultures in yogurt production due to the technological roles of exopolysacharides (EPS) produced by these cultures. The main role of EPS in yogurt production is to improve the textural properties of yogurt as an in situ produced natural polymer. In addition to the yogurt starter cultures, use of adjunct cultures during production of yogurt is also of special interest to enhance the technological and nutritional characteristics of yogurt. Therefore, in this study, potential yogurt starter and adjunct cultures from traditional yogurt samples with EPS production characteristics were isolated. From these isolates, Lactobacillus delbrueckii subsp. bulgaricus Y39 and Streptococcus thermophilus Y102 produced heteropolymeric EPS containing glucose and galactose, whereas Leuconostoc mesenteroides Y35 and Lactobacillus plantarum Y36 produced homopolymeric glucan.  相似文献   

9.
Lata Ramchandran 《LWT》2010,43(5):819-827
This study examined the influence of exopolysaccharides (EPS) produced in situ on the viability of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus and probiotics, the proteolytic and ACE-inhibitory activities, and textural and rheological properties of inulin-containing probiotic yogurt during refrigerated storage. Two types of yogurt were prepared using strains of S. thermophilus not producing EPS (NEPY) and producing EPS (EPY). The yield of crude EPS increased (by 2.4 times) until day 21 of storage. Presence of EPS showed a protective effect on the survival of L. delbrueckii ssp. bulgaricus and Lactobacillus acidophilus but not on S. thermophilus, Lactobacillus casei and Bifidobacterium longum. No changes in post-acidification, lactic acid content or the ACE-inhibition activity of the two types of yogurt were observed. Overall, EPS containing yogurts exhibited higher proteolysis in the presence of inulin and probiotics (0.698 units) than the corresponding control (0.563 units). The storage and loss moduli (Pa), yield stress (Pa), consistency index (Pa s) and thixotrophic behaviour (Pa s−1) of both samples were similar at day 1 and the influence of EPS was observable only after day 7. Such a variation of the effect of EPS on the textural and rheological properties of low-fat yogurt appears to be partially due to the presence of probiotics.  相似文献   

10.
One acidifying (ST1) and two texturing strains (ST2 and ST3) of Streptococcus thermophilus were used as pure or co-cultures to identify and understand their effects on the structuring of acid milk gels and on the appearance of texture defects, i.e., syneresis and graininess. Symbiosis between specific texturing and acidifying strains reduced acidification time and increased exocellular polysaccharide (EPS) content. The texturing strain could simultaneously produce low and high molar mass EPS and their distribution in mass and/or in number were influenced by the proportion of acidifying to texturing strain used. The results of this study suggest that the high molar mass EPS contributes to acid gel firmness, but less so compared with the acidification rate. The ability of strain ST3 to prevent texture defects, specifically graininess, did not depend on the acidification kinetics or final EPS content, but rather on the structural properties of EPS and/or the bacterial chain morphology.  相似文献   

11.
To prevent textural defects in low-fat and fat-free yogurts, fat substitutes are routinely added to milk. In situ production of exopolysaccharides (EPS) by starter cultures is an acknowledged alternative to the addition of biothickeners. With the aim of increasing in situ EPS production, a recombinant galactose-positive EPS+Streptococcus thermophilus strain, RD-534-S1, was generated and compared with the parent galactose-negative EPS+ strain RD-534. The RD-534-S1 strain produced up to 84 mg/L of EPS during a single-strain milk fermentation process, which represented 1.3 times more than the EPS produced by strain RD-534. Under conditions that mimic industrial yogurt production, the starter culture consisting of RD-534-S1 and (EPS) Lactobacillus bulgaricus L210R strain (RD-534-S1/L210R) led to an EPS production increase of 1.65-fold as compared with RD-534-S1 alone. However, the amount of EPS produced did not differ from that found in yogurts produced using an isogenic starter culture that included the parent S. thermophilus strain RD-534 and Lb. bulgaricus L210R (RD-534/L210R). Moreover, the gel characteristics of set-style yogurt and the rheological properties of stirred-style yogurt produced using RD-534-S1/L210R were similar to the values obtained for yogurts made with RD-534/L210R. In conclusion, it is possible to increase the production of EPS by ropy S. thermophilus strains through genetic engineering of galactose metabolism. However, when used in combination with Lb. bulgaricus for yogurt manufacture, the EPS overproduction of recombinant strain is not significant.  相似文献   

12.
13.
The aim of this study was to examine the influence of using exopolysaccharide (EPS) producing strain of Streptococcus thermophilus on the viability of yogurt starters, their proteolytic and angiotensin-I converting enzyme-inhibitory activities, and on the textural and rheological properties of the low-fat yogurt during storage at 4°C for 28 d. The use of an EPS-producing strain of S. thermophilus did not have influence on pH, lactic acid content, or the angiotensin-I converting enzyme-inhibition activity of low-fat yogurt. However, EPS showed a protective effect on the survival of Lactobacillus delbrueckii ssp. bulgaricus. Presence of EPS reduced the firmness, spontaneous whey separation, yield stress, and hysteresis loop area but not the consistency and flow behavior index of low-fat yogurt.  相似文献   

14.
Yogurt is a well-known nutritious and probiotic food and is traditionally fermented from milk using the symbiotic starter culture of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. However, yogurt consumption may cause health problems in lactose-intolerant individuals, and the demand for lactose-free yogurt has been increasing. The standard method to prepare lactose-free yogurt is to hydrolyze milk by lactase; however, this process has been reported to influence the fermentation properties of starter strains. This study aimed to investigate the fermentation properties of an industrial starter culture of L. bulgaricus 2038 and S. thermophilus 1131 in lactose-hydrolyzed milk and to examine the metabolic changes induced by glucose utilization. We found that the cell number of L. bulgaricus 2038, exopolysaccharide concentration, and viscosity in the coculture of L. bulgaricus 2038 and S. thermophilus 1131 was significantly increased in lactose-hydrolyzed milk compared with that in unhydrolyzed milk. Although the cell number of S. thermophilus 1131 showed no difference, production of formic acid and reduction of dissolved oxygen were enhanced in lactose-hydrolyzed milk. Further, in lactose-hydrolyzed milk, S. thermophilus 1131 was found to have increased the expression of NADH oxidase, which is responsible for oxygen reduction. These results indicated that glucose utilization promoted S. thermophilus 1131 to rapidly reduce the dissolved oxygen amount and produce a high concentration of formic acid, presumably resulting in the increased cell number of L. bulgaricus 2038 in the coculture. Our study provides basic information on the metabolic changes in starter strains in lactose-hydrolyzed milk, and demonstrates that lactose-free yogurt with increased cell number of L. bulgaricus can be prepared without delay in fermentation and decrease in the cell number of S. thermophilus.  相似文献   

15.
Forty-four lactic acid bacteria (LAB) isolated from traditional Sayram ropy fermented milk (SRFM) in southern Xinjiang of China. Further two strains were selected based on their high viscosity-producing activity. Based on the API 50 CHL strip and 16S rDNA sequence analysis, strain MB 2-1 was a Gram-positive, rod-shaped Lactobacillus helveticus and strain MB 5-1 was identified as Streptococcus thermophilus. Both the two LAB strains were grown in the milk fermentations for pure and mixed cultures and were evaluated for their growth, acidification properties, EPS production, and ability to increase the apparent viscosity of fermented milk, respectively. L. helveticus MB 2-1 displayed a high increasing in viable cell counts and the acidifying capacity in pure cultures, whereas the relatively high EPS production and viscosity-producing capacity detected in pure culture with S. thermophilus MB 5-1 as starter culture. In addition, the mixed culture of the two strains showed a higher cell growth, EPS production, and high viscosity-producing capacity at 37?°C. Values of apparent viscosity were 4.03- and 2.41-fold higher in mixed culture than for pure cultures of L. helveticus MB 2-1 and S. thermophilus MB 5-1, respectively. There was a positive correlation between the viscosity and high molecular weight EPS production with pure and mixed cultures. Our data showed two strains combination, with high viscosity-producing and acidifying capacity, can be used in mixed cultures for the manufacture of fermented milk with improved functional properties.  相似文献   

16.
17.
《International Dairy Journal》2007,17(11):1344-1352
This study investigated the effects of two Streptococcus thermophilus strains, ST 285 and ST 1275, on selected technological and rheological characteristics of set-type yoghurt. The strains were selected for their capability to produce distinctly different exopolysaccharides (EPS) and were thus coded as capsular (ST 285) or ropy-capsular (ST 1275). The culture performance and physico-chemical properties of yoghurt were assessed in relation to different fermentation temperatures (30, 37 or 42 °C) and prolonged storage (up to 30 days) at low temperature (4 °C). ST 1275 showed faster growth and acidification rates, resulting in yoghurt with lower syneresis and higher-flow behaviour index, than ST 285. EPS production appeared to be growth associated with the maximum given at growth temperatures of 37 and 42 °C for ST 285 and ST 1275, respectively; however, EPS concentration declined considerably during storage. Prolonged cold storage increased several rheological characteristics of yoghurt including G′, consistency index and hysteresis loop area. A weak correlation between EPS concentration and textural properties of yoghurt was observed.  相似文献   

18.
Milk was fermented with the exopolysaccharide-producing (EPS+) strains Lactococcus lactis subsp. cremoris, Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus and with the non-EPS-producing strain (EPS) L. lactis subsp. cremoris. The kinetics of gelation and the behaviour of set fermented milk during and after shearing were studied using rheometry and confocal scanning laser microscopy. The time of gelation of milk depended on the kinetics of acidification of strains whereas the pH of gelation depended mostly on the presence of exopolysaccharides (EPS). In set fermented milk with EPS+ strains, bacteria were observed in protein-free areas likely filled with EPS. Phase-separated EPS and caseins contributed to induce the gelation of fermented milk at pH 5.6. The high resistance to shearing of milk fermented with the EPS+ strain L. lactis subsp. cremoris might be due to the negative charge of the exopolysaccharide allowing an attractive interaction with caseins.  相似文献   

19.
The microstructure and texture of yoghurts produced by four different exopolysaccharide (EPS)-producing starter cultures and mechanically treated post-fermentation at four levels of intensity (applied back-pressure) were studied. Two Lactobacillus delbrueckii ssp. bulgaricus (LB) strains were used in combination with two Streptococcus thermophilus (ST) strains and yoghurts were formulated by pairwise combining one LB and one ST strain. The choice of ST strain was the major determinant for the rheological properties of the yoghurts, since one of the ST strains conferred a ropy texture and resulted in yoghurts with decreased water holding capacity and an open microstructure. In addition, one of the LB strains used produced both aggregated and threadlike EPS and improved water holding. When combined with an ST strain that produced neglible amounts of EPS this LB strain resulted in yoghurt where a moderate mechanical treatment post-fermentation was able to further improve the water holding capacity.  相似文献   

20.
为探究3株嗜热链球菌ST-5P、ST-7P、ST-134P产胞外多糖(EPS)的稳定性,将其分别接种到胞外多糖选择性培养基中连续传代培养30个周期(24h/周期)。结果表明:3株菌在传代过程中的增殖和产酸能力均保持稳定;但其产胞外多糖能力的稳定性不同,ST-7P的稳定性显著高于ST-5P和ST-134P。SPSS软件的相关性分析表明,活菌数、pH值与EPS产量之间没有显著相关性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号