首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
Measurements performed in an electron microscope with the mirror operation mode are most sensitive to local electric fields and geometrical roughness of any kind of the object being studied. The object with a geometrical relief is equivalent to a smooth surface with an effective distribution of microfields. Electrons forming the image interact with the local microfields for an extended time: during approach to the object, deceleration and acceleration away from the object. As a result, the electron trajectories can be strongly distorted, and the contrast changes essentially, leading to image deformation of details of the object under investigation and to lowering of the resolution. These effects are theoretically described and are illustrated by experiments. An analysis of these effects enables the real size and the shape of the object involved to be reconstructed.  相似文献   

2.
An emission electron microscope without restriction of the electron beams was used to visualize and measure the distribution of electric fields and potentials on the surface under study. Investigations of this kind can be performed in an emission electron microscope without any aperture diaphragm. The potentialities of this method have been demonstrated using measurements with a silicon p–n junction to which a voltage has been applied in the reverse direction. The quantitative analysis becomes more complicated if the specimen is characterized by a heterogeneous intensity distribution of the electron emission from different areas of its surface. In the latter case two images obtained at different accelerating voltages (i.e. different voltages of the microscope extractor) provide the information necessary for an analysis of electric field and potential distributions.  相似文献   

3.
Local changes in work function cause deviations of the electrical microfield near a sample surface as a result of the uniform accelerating field distribution between the sample (cathode) and the extractor electrode (anode). This results in a change in the electron trajectories. As a consequence, the microscope image shows remarkable changes in position, size, intensity and lateral resolution of distinct details, which can be quantitatively described by the calculations presented here. Analysing these effects in the image gives an opportunity to determine the real lateral size of the observed structures and the distribution of local contact potentials.  相似文献   

4.
The contrast thicknesses (xk) of thin carbon and platinum films have been measured in the transmission mode of a low-voltage scanning electron microscope for apertures of 40 and 100 mrad and electron energies (E) between 1 and 30 keV. The measured values overlap with those previously measured for E (≥ 17keV) in a transmission electron microscope. Differences in the decrease of xk with decreasing E between carbon and platinum agree with Wentzel-Kramer-Brillouin calculations of the elastic cross-sections. Knowing the value of xk allows the exponential decrease ∝ exp(—x/xk) in transmission with increasing mass-thickness (x = ρt) of the specimen and the increasing gain of contrast for stained biological sections with decreasing electron energy to be calculated for brightfield and darkfield modes.  相似文献   

5.
K. Z. Baba-Kishi 《Scanning》1996,18(4):315-321
In this paper, the technique of scanning reflection electron microscopy (SREM) by diffusely scattered electrons in the scanning electron microscope is described in detail. A qualitative account of the formation of image contrast in SREM is also described. It is assumed that, for grazing geometry, forward-scattered electrons reflect from regions close to the surface, following a few scattering events within the first few atomic layers, and lose very little energy in the process. The penetration depth of the primary electrons is very limited, resulting in strongly peaked envelopes of forward-scattered electrons. It is also assumed that a surface containing topographic features presents a range of tilt angles, resulting in different reflection coefficients. Tilt contrast results because each facet has a different scattering yield, which is dependent upon local surface inclination. Full details of the instrumentation designed for SREM are described, and to illustrate the technique, results recorded from an epitaxial GaAs on GaAs crystal, Pb2(Zr,Ta)O6 thin film on silicon, and SiO2 amorphous film on silicon are presented.  相似文献   

6.
Most biological processes, chemical reactions and materials dynamics occur at rates much faster than can be captured with standard video rate acquisition methods in transmission electron microscopes (TEM). Thus, there is a need to increase the temporal resolution in order to capture and understand salient features of these rapid materials processes. This paper details the development of a high-time resolution dynamic transmission electron microscope (DTEM) that captures dynamics in materials with nanosecond time resolution. The current DTEM performance, having a spatial resolution <10nm for single-shot imaging using 15ns electron pulses, will be discussed in the context of experimental investigations in solid state reactions of NiAl reactive multilayer films, the study of martensitic transformations in nanocrystalline Ti and the catalytic growth of Si nanowires. In addition, this paper will address the technical issues involved with high current, electron pulse operation and the near-term improvements to the electron optics, which will greatly improve the signal and spatial resolutions, and to the laser system, which will allow tailored specimen and photocathode drive conditions.  相似文献   

7.
J T Thong  K W Lee  W K Wong 《Scanning》2001,23(6):395-402
We describe a vector scanning system to reduce charging effects during scanning electron microscope (SEM) imaging. The vector scan technique exploits the intrinsic charge decay mechanism of the specimen to improve imaging conditions. We compare SEM images obtained by conventional raster scanning versus vector scanning to demonstrate that vector scanning successfully reduces specimen-charging artifacts.  相似文献   

8.
The resolution limit achievable by holographic correction of the aberrations of an electron microscope depends critically on the information available about the microscope parameters when the hologram was taken. The measuring technique based on symmetry relations of the phases in the Fourier spectrum of the reconstructed electron wave is outlined and experimentally tested.  相似文献   

9.
The behaviour of carbon black particles immersed in a variety of gases and simultaneously irradiated with an electron beam has been investigated. Because this treatment was performed in a modified high-resolution transmission electron microscope, the remarkable morphological and microstructural changes that occurred could be observed directly. In addition to the physical damage to the specimens, believed to be caused by a high flux of low energy ions generated by the electron beam, the use of reactive gases in this study exposed additional chemical sputtering effects that will be of importance for future controlled-environment microscopy.  相似文献   

10.
Quan X  Ji Y  Zhang H  Zhang Y  Xu X  Zhong T 《Scanning》2006,28(5):289-293
A gas microinjector system was set up in an environmental scanning electron microscope (ESEM) to create an oxygen atmosphere around the alumina samples for the charging compensation under a pressure between 2 x 10(-5) Pa approximately 2 x 10(-2) Pa. At low pressures, the skirt effect of the electron scattering can be degraded, which results in improvement of the imaging contrast and increase of the signal/noise ratio. The sample current (I(SC)) and the Duane-Hunt limit were measured to evaluate the charging effect.  相似文献   

11.
Characterization of the cellular structure and chemical and physical properties of hair are essential to develop better cosmetic products and advance the biological and cosmetic sciences. Although the morphology of the fine cellular structure of human hair has traditionally been investigated using scanning electron microscopy and transmission electron microscopy, atomic force microscopy can be used for characterization in ambient conditions without requiring specific sample preparations and surface treatment. In this study, the tapping and torsional resonance modes in an atomic force microscope are compared for measurements of stiffness and viscoelastic properties. The materials were mapped using amplitude and phase angle imaging. The torsional resonance mode showed advantages in resolving the in-plane (lateral) heterogeneity of materials. This mode was used for investigating and characterizing the fine cellular structure of human hair. Various cellular structures (such as the cortex and the cuticle) of human hair and fine sublamellar structures of the cuticle, such as the A-layer, the exocuticle, the endocuticle and the cell membrane complex were easily identified. The distribution and thickness of conditioner on the treated hair surface affects the tribological properties of hair. The thickness of the conditioner was estimated using force distance measurements with an atomic force microscope.  相似文献   

12.
13.
Toth M  Phillips MR 《Scanning》2000,22(5):319-325
We present experimental evidence for the existence of a space charge in the environmental scanning electron microscope. Space charge formation is attributed to differences in the mobilities of negative and positive charge carriers in the imaging gas. A model is proposed for the behavior of space charge during image acquisition. The effects of space charge on images acquired using the gaseous secondary electron detector, ion current, and backscattered electron signals are interpreted using the proposed model.  相似文献   

14.
The objective of this investigation was to evaluate the practical effects of electron beam broadening in the environmental scanning electron microscope (ESEM) on particle x-ray microanalysis and to determine some of the optimum operating conditions for this type of analysis. Four sets of experiments were conducted using a Faraday cage and particles of copper, glass, cassiterite, andrutile. The accelerating voltage and chamber pressure varied from 20 to 10 kV and from 665–66 Pa (5.0 to 0.5 torr), respectively. The standard gaseous secondary electron detectors (GSED) and the long environmental secondary dectectors (ESD) for the ESEM were evaluated at different working distances. The effect of these parameters on the presence of artifact peaks was evaluated. The particles were mounted on carbon tape on an aluminum specimen mount and were analyzed individually and as a mixture. Substrate peaks were present in almost all of the spectra. The presence of neighboring particle peaks and the number of counts in these depended upon the operating conditions. In general, few of these peaks were observed with the long ESD detector at 19 mm working distance and at low chamber pressures. More peaks and counts were observed with a deviation from these conditions. The most neighboring peaks and counts were obtained with the GSED detector at 21.5 mm working distance, 10 kV accelerating voltage, and 665 Pa (5.0 torr) chamber pressure. The results of these experiments support the idea that the optimum instrumental operating conditions for EDS analysis in the ESEM occur by minimizing the gas path length and the chamber water vapor pressure, and by maximizing the accelerating voltage. The results suggest that the analyst can expect x-ray counts from the mounting materials. These tests strongly support the recommendation of the manufacturer to use the long ESD detector and a 19 mm working distance for EDS analysis. The results of these experiments indicate that neighboring particles millimeters from the target may contribute x-ray counts to the spectrum.  相似文献   

15.
Foliar diseases like apple scab result in significant economic losses to growers each year. Assessment in past studies involved only macroscopic disease ratings. More complete knowledge of the fate and behavior of fungicide has been needed to reduce pesticide use with less off‐target contamination. Field studies were conducted in a production nursery for over 4 years. A moderately susceptible cultivar of ornamental crabapple, Malus spp. cv “Candied Apple”, was sprayed with a fungicide using two sprayer/nozzle configurations. The fungicide used in this study was Mankocide, combination of Cu(OH)2 and mancozeb that permitted electron beam analysis (EBA) identification based on the presence of Cu, MN and Zn in the molecule and formulation. EBA was conducted using a cold field emission scanning electron microscopy and energy dispersive x‐ray microanalyzer. Fresh leaf samples were placed on sticky stubs after each fungicide treatment. The presence or absence of fungal conidia and fungicide residue were measured. EBA permitted direct visualization and identification of the pathogens, morphologically, and chemical characterization of fungicide present. EBA was useful to quantify disease control related to fungicide coverage, sprayer configuration and treatment efficacy. SCANNING 31: 24–27, 2009. Published 2009 by Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号