首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-eight (8 ruminally cannulated) lactating, multiparous Holstein cows were blocked by DIM and randomly assigned to 7 replicated 4 × 4 Latin squares (28-d periods) to investigate the effects of different dietary ratios of alfalfa silage (AS) to corn silage (CS) on production, N utilization, apparent digestibility, and ruminal metabolism. The 4 diets contained (dry matter basis): A) 51% AS, 43% rolled high-moisture shelled corn (HMSC), and 3% solvent soybean meal (SSBM); B) 37% AS, 13% CS, 39% HMSC, and 7% SSBM; C) 24% AS, 27% CS, 35% HMSC, and 12% SSBM; and D) 10% AS, 40% CS, 31% HMSC, and 16% SSBM. Dietary crude protein contents were 17.2, 16.9, 16.6, and 16.2% for diets A, B, C, and D. All 4 diets were high in energy, averaging 49% nonfiber carbohydrates and 24% neutral detergent fiber. Intake of dry matter, yield of milk, 3.5% fat-corrected milk and fat, milk fat content, and apparent digestibility of neutral detergent fiber and acid detergent fiber all decreased linearly when CS replaced AS. Effects on fiber digestion and milk fat may have been due to increasing fluctuation in ruminal pH and time the pH remained <6.0 when CS replaced AS. Milk protein content increased linearly with increasing CS, but there were no differences in protein yield. There were linear increases in apparent N efficiency and decreases in N excreted in urine and feces when CS replaced AS. Production was depressed on the diet highest in CS. Quadratic analysis indicated that milk and protein yields were maximal at dietary AS:CS ratios of, respectively, 37:13 and 31:19. No diet minimized N excretion without negatively affecting production. Diet C, with an AS:CS ratio of 24:27, was the best compromise between improved N efficiency and sustained production. Because CS is complementary with AS, it is recommended that CS be fed in AS-based diets to maintain milk yield while improving N utilization.  相似文献   

2.
The objective of the current study was to investigate the effect of N-carbamoylglutamate (NCG) supplementation on milk production and nitrogen (N) utilization in Chinese Holstein dairy cows. Sixty multiparous cows (78 ± 17.3 d in milk, 635 ± 61.00 kg of body weight, and 41.9 ± 7.9 kg/d milk yield; mean ± SD) were blocked by parity, days in milk, and milk yield and randomly allocated to 1 of 4 groups, each of which was fed a dietary treatment containing 0 (control), 10, 20, or 30 g of NCG/d. Milk yield was recorded weekly. Dry matter intake, milk composition, plasma variables, and urea N contents in plasma, urine, and milk were determined every other week. Blood samples were collected from the coccygeal vein. Rumen microbial protein synthesis was estimated based on the purine derivatives in the urine. Dry matter intake was found to be similar between the treatments. Addition of 20 g of NCG/d tended to increase milk yield (40.2 vs. 38.1 kg/d) and increased the content (2.83 vs. 2.74%) and yield (1.12 vs. 1.02 kg/d) of milk protein compared with the control. The yield and content of milk fat were similar between the treatments, whereas the contents of lactose and total solids increased linearly with an increase in NCG. Dietary supplementation of NCG linearly increased the plasma nitric oxide level and decreased the plasma ammonia N level. Compared with the control, the plasma Arg concentration in cows fed 10, 20, and 30 g of NCG/d was increased by 1.1, 10.4, and 16.0%, respectively. The urea N concentrations in the milk, plasma, and urine decreased with the addition of NCG, although the lowest urea N concentrations were observed with the addition of 20 g of NCG/d. The conversion of dietary crude protein to milk protein exhibited quadratic trends of improvement by NCG supplementation, with a peak at 20 g of NCG/d. The rumen microbial protein synthesis was not altered by NCG supplementation, but the metabolizable protein tended to show a quadratic increase in cows fed 20 g of NCG/d. In conclusion, supplementation of 20 g of NVG/d may alter the plasma metabolites, optimize the AA profile, increase the metabolizable protein utilization, and thereby improve the lactation performance and N utilization of high-yielding dairy cows.  相似文献   

3.
The objective of this study was to investigate the effects of the level of metabolizable protein (MP) on milk production and nitrogen utilization in Chinese Holstein dairy cows. Forty multiparous dairy cows (body weight = 590 kg; days in milk = 135; average milk yield = 30.2 kg/d) were assigned to treatments randomly within groups based on days in milk and milk production. Animals were offered diets with different levels of MP: 8.3% (diet A), 8.9% (diet B), 9.7% (diet C), and 10.4% (diet D) of dry matter. The MP level in diet A was designed to meet the current Chinese National Station of Animal Production and Health guidelines, whereas that in diet D was based on the National Research Council (2001) model. The experiment lasted for 7 wk. Milk yield and milk composition (fat, protein, and lactose) were recorded, and urea nitrogen concentrations in serum, urine, and milk were measured during the experiment. Milk yield and milk protein percentage increased as the MP increased up to 9.7% of dry matter, and then leveled off. Concentrations of nitrogen in urine, serum, and milk increased linearly as the amount of MP was increased, indicating decreased efficiency of nitrogen utilization. Milk lactose percentage and total solids percentage showed no significant differences among the 4 diets. We concluded that the optimal dietary MP level was at 9.6% of dry matter for Chinese Holstein dairy cows producing 30 kg of milk per day.  相似文献   

4.
In trial 1, 15 Holsteins were fed 3 total mixed rations (TMR) with 33% neutral detergent fiber in 3 × 3 Latin squares (28-d periods). Two TMR contained (dry matter basis): 40% control alfalfa silage (CAS) or 40% ammonium tetraformate-treated alfalfa silage (TAS), 20% corn silage (CS), 33% high-moisture shelled corn (HMSC), 6% solvent soybean meal (SSBM), and 18% crude protein (CP); the third TMR contained 54% red clover silage (RCS), 6% dried molasses, 33% HMSC, 6% SSBM, and 16.3% CP. Silages differed in nonprotein N (NPN) and acid detergent insoluble N (ADIN; % of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS). Replacing CAS with TAS increased intake, yields of milk, fat-corrected milk, protein, and solids-not-fat, and apparent dry matter and N efficiency. Replacing CAS with RCS increased intake and N efficiency but not milk yield. Replacing CAS or TAS with RCS lowered milk urea N, increased apparent nutrient digestibility, and diverted N excretion from urine to feces. In trial 2, 24 Holsteins (8 ruminally cannulated) were fed 4 TMR in 4 × 4 Latin squares (28-d periods). Diets included the CAS, TAS, and RCS (RCS1) fed in trial 1 plus an immature RCS (RCS2; 29% NPN, 4% ADIN). The CAS, TAS, and RCS2 diets contained 36% HMSC and 3% SSBM and the RCS1 diet contained 31% HMSC and 9% SSBM. All TMR had 50% legume silage, 10% CS, 27% neutral detergent fiber, and 17 to 18% CP. Little difference was observed between cows fed CAS and TAS. Intakes of DM and yields of milk, fat-corrected milk, fat, protein, lactose, and solids-not-fat, and milk fat and protein content were greater on alfalfa silage vs. RCS. Blood urea N, milk urea N, ruminal ammonia, and total urinary N excretion were reduced on RCS, suggesting better N utilization on the lower NPN silage. Apparent N efficiency tended to be higher for cows fed RCS but there was no difference when N efficiency was expressed as kilograms of milk yield per kilogram of total N excreted.  相似文献   

5.
Seven ruminally cannulated lactating Holstein dairy cows were used in an incomplete Latin rectangle design to assess the effects of 2 commercial essential oil (EO) products on rumen fermentation, milk production, and feeding behavior. Cows were fed a total mixed ration with a 42:58 forage:concentrate ratio (DM basis). Treatments included addition of 0.5 g/d of CE Lo (85 mg of cinnamaldehyde and 140 mg of eugenol), 10 g/d of CE Hi (1,700 mg of cinnamaldehyde and 2,800 mg of eugenol), 0.25 g/d of CAP (50 mg of capsicum), or no oil (CON). Cows were fed ad libitum twice daily for 21 d per period. Dry matter intake, number of meals/d, h eating/d, mean meal length, rumination events/d, h ruminating/d, and mean rumination length were not affected by EO. However, length of the first meal after feeding decreased with addition of CE Hi (47.2 min) and CAP (49.4 min) compared with CON (65.4 min). Total volatile fatty acids, individual volatile fatty acids, acetate:propionate ratio, and ammonia concentration were not affected by EO. Mean rumen pH as well as bouts, total h, mean bout length, total area, and mean bout area under pH 5.6 did not differ among treatments. Total tract digestibility of organic matter, dry matter, neutral detergent fiber, acid detergent fiber, crude protein, and starch were not affected by EO. Milk yield and composition did not change with EO. In situ dry matter disappearance of ground soybean hulls was not affected by EO. However, organic matter disappearance of soybean hulls with CE Hi tended to decrease compared with CON. Compared with CON, neutral detergent fiber disappearance (41.5 vs. 37.6%) and acid detergent fiber disappearance (44.5 vs. 38.8%) decreased with addition of CE Hi. The CE Lo had no effect on rumen fermentation, milk production, or feeding behavior but CAP shortened the length of the first meal without changing rumen fermentation or production, making it a possible additive for altering feeding behavior. The CE Hi negatively affected rumen fermentation and shortened the length of the first meal, suggesting that a dose of 10 g/d is not beneficial to lactating dairy cows.  相似文献   

6.
The main objective of this experiment was to examine the effects of the percentage and source of crude protein (CP) and the amount of starch in the diet of dairy cows on the lactational performance and use of N for milk production. Sixty multiparous Holstein cows were used in a 210-d lactational trial with a completely randomized design with a 2 × 3 factorial arrangement of treatments. Two sources of CP [solvent-extracted soybean meal (SBM) and a mixture of SBM and a blend of animal-marine protein supplements plus ruminally protected Met (AMB)] and 3 levels of dietary CP (means = 14.8, 16.8, and 18.7%) were combined into 6 treatments. On a dry matter (DM) basis, diets contained 25.0% corn silage, 20.0% alfalfa silage, 10.0% cottonseed, 26.7 to 37.0% corn grain, and 4.8 to 13.5% protein supplement, plus minerals and vitamins. Across the 210 d of lactation, the productive response of dairy cows to the source of supplemental CP depended on the concentration of CP in the diet. At 18.7% CP, cows fed SBM consumed more DM and produced more milk, 3.5% fat-corrected milk, fat, and true protein, but had lower efficiency of feed use and body condition score than cows fed AMB. At 16.8% CP, cows fed AMB produced more 3.5% fat-corrected milk, fat, and true protein than cows fed SBM. At 14.8% CP, cows fed SBM consumed more DM but produced less true protein and had lower feed efficiency than cows fed AMB. Across CP sources, cows fed 14.8% CP produced less fat-corrected milk and true protein than cows fed 16.8 and 18.7% CP. Across CP percentages, cows fed AMB produced more fat-corrected milk per kilogram of DM consumed than cows fed SBM. Despite these interactions, improvements in the gross efficiency of N use for milk production were achieved through reductions in the intake of N independently of the source of CP. Data suggest that the intake of N by high-producing dairy cows that consume sufficient energy and other nutrients to meet their requirements can be decreased to about 600 to 650 g daily if the source of RDP and RUP are properly matched with the source and amount of carbohydrate in the diet.  相似文献   

7.
A lactation experiment was conducted to determine the influence of quebracho condensed tannin extract (CTE) on ruminal fermentation and lactational performance of dairy cows. The cows were fed a high forage (HF) or a low forage (LF) diet with a forage-to-concentrate ratio of 59:41 or 41:59 on a dry matter (DM) basis, respectively. Eight multiparous lactating Holstein cows (62 ± 8.8 d in milk) were used. The design of the experiment was a double 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments, and each period lasted 21 d (14 d of treatment adaptation and 7 d of data collection and sampling). Four dietary treatments were tested: HF without CTE, HF with CTE (HF+CTE), LF without CTE, and LF with CTE (LF+CTE). Commercial quebracho CTE was added to the HF+CTE and the LF+CTE at a rate of 3% of dietary DM. Intake of DM averaged 26.7 kg/d across treatments, and supplementing CTE decreased intakes of DM and nutrients regardless of forage level. Digestibilities of DM and nutrients were not affected by CTE supplementation. Milk yield averaged 35.3 kg/d across treatments, and yields of milk and milk component were not influenced by CTE supplementation. Negative effects of CTE supplementation on feed intake resulted in increased feed efficiency (milk yield/DM intake). Although concentration of milk urea N (MUN) decreased by supplementing CTE in the diets, efficiency of N use for milk N was not affected by CTE supplementation. Feeding the LF diet decreased ruminal pH (mean of 6.47 and 6.33 in HF and LF, respectively). However, supplementation of CTE in the diets did not influence ruminal pH. Supplementing CTE decreased total volatile fatty acid concentration regardless of level of forage. With CTE supplementation, molar proportions of acetate, propionate, and butyrate increased in the HF diet, but not in the LF diet, resulting in interactions between forage level and CTE supplementation. Concentration of ammonia-N tended to decrease with supplementation of CTE. The most remarkable finding in this study was that cows fed CTE-supplemented diets had decreased ruminal ammonia-N and MUN concentrations, indicating that less ruminal N was lost as ammonia because of decreased degradation of crude protein by rumen microorganisms in response to CTE supplementation. Therefore, supplementation of CTE in lactation dairy diets may change the route of N excretion, having less excretion into urine but more into feces, as it had no effect on N utilization efficiency for milk production.  相似文献   

8.
Forty lactating Holstein cows, including 10 with ruminal cannulas, were blocked by days in milk into 8 groups and then randomly assigned to 1 of 8 incomplete 5 × 5 Latin squares to assess the effects of 5 levels of dietary crude protein (CP) on milk production and N use. Diets contained 25% alfalfa silage, 25% corn silage, and 50% concentrate, on a dry matter (DM) basis. Rolled high-moisture shelled corn was replaced with solvent-extracted soybean meal to increase CP from 13.5 to 15.0, 16.5, 17.9, and 19.4% of DM. Each of the 4 experimental periods lasted 28 d, with 14 d for adaptation and 14 d for data collection. Spot sampling of ruminal digesta, blood, urine, and feces was conducted on d 21 of each period. Intake of DM was not affected by diet but milk fat content as well as ruminal acetate, NH3, and branched-chain volatile fatty acids, urinary allantoin, and blood and milk urea all increased linearly with increasing CP. Milk and protein yield showed trends for quadratic responses to dietary CP and were, respectively, 38.3 and 1.18 kg/d at 16.5% CP. As a proportion of N intake, urinary N excretion increased from 23.8 to 36.2%, whereas N secreted in milk decreased from 36.5 to 25.4%, as dietary protein increased from 13.5 to 19.4%. Under the conditions of this study, yield of milk and protein were not increased by feeding more than 16.5% CP. The linear increase in urinary N excretion resulted from a sharp decline in N efficiency as dietary CP content increased.  相似文献   

9.
The objective of this experiment was to determine whether varying times at which a partial mixed ration was fed, either before or after grazing, affected N utilization from rye pasture and thus affected milk yield and components. Sixteen Holstein cows were fed a partial mixed ration (PMR) either at 0700, 0830, or 1100 h. Cows were milked at 0900 h and turned out to graze at 0930 h. Treatments represented feeding times 2.5 h and 1 h before grazing and immediately after grazing. The study was conducted as a 3 x 3 Latin square with three 17-d periods. There were no significant differences among treatments for pasture intake or yield of milk or milk components. Milk yield, fat %, and protein % were 29.4, 29.6, and 29.3 kg, 3.5, 3.5, and 3.4%, and 3.4, 3.5, and 3.4% for treatments, respectively. The milk urea levels were 15.6, 15.1, and 15.5 mg/dl, and were not different among treatments. Blood samples were collected on the last day of each period at 0645, 0845, 1045, 1200, and 1400 h. Blood urea nitrogen (BUN) was measured as an indicator of ruminal N capture. Concentrations were not significantly different among diets before grazing; however, they were significantly different among all treatments approximately 1 h after cows were removed from pasture. Cows fed at 0700 h, 2 h before grazing, maintained lower BUN levels across the 7 h during which the blood samples were collected. Cows that ate the PMR immediately after grazing maintained the highest BUN. Feeding a PMR to cows that graze at different times before and after grazing affected the capture of ruminal N, as indicated by differences in the levels of BUN, but there was no effect on yield of milk or milk components.  相似文献   

10.
Six ruminally and duodenally cannulated lactating primiparous Holstein cows were used to study the effects of different methods of conservation of timothy on N metabolism. Cows were assigned randomly to 2 replicated 3 × 3 Latin squares (35-d periods). Because of missing data from 2 cows, data were analyzed as a 3 × 4 Youden square. Diets contained a similar concentrate (44% of total ration on a dry matter basis) plus first-cut timothy conserved as hay, or as restrictively (formic) or extensively fermented silage (inoc). Crude protein contents were 10.4, 13.6, and 14.8% for hay, formic, and inoc, respectively. Hay and formic had a high soluble carbohydrate content (≥8.0% of dry matter) and formic and inoc had a high soluble protein content (≥8.0% of dry matter). Haying and restricting fermentation resulted in increased efficiency of partition to milk N (30.9, 28.2, 24.7% of N intake for hay, formic, and inoc, respectively). Despite a 14% lower N intake with hay, no effects of treatments were detected on microbial protein synthesis and apparent intestinal digestion of essential AA. Haying reduced feed protein degradation in the rumen, whereas this effect was not observed when restricting fermentation in the silage. Haying and restricting fermentation induced a lipogenic fermentation pattern in the rumen (4.55, 4.23, and 3.78 ratio of acetate to propionate for hay, formic, and inoc), but no effects on milk fat yield and plasma glucose were observed. Whole-body protein metabolism was unaffected by treatments.  相似文献   

11.
Sixteen (8 ruminally cannulated) multiparous and 8 primiparous lactating Holstein cows were used in 6 replicated 4 × 4 Latin squares to test the effects of feeding supplemental protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on milk production, nutrient utilization, and ruminal metabolism. All diets contained (% of DM) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. Intake and production were substantially reduced, and milk urea, blood urea, and ruminal ammonia were increased on urea vs. the diets supplemented with true protein. Although intake was lower in cows fed SSBM compared with CM, no differences were observed for milk yield among SSBM, CSM, and CM. Yields of fat and protein both were lower on CSM than on CM, whereas SSBM was intermediate. Milk urea and milk protein contents also decreased when CSM replaced SSBM or CM. Diet did not affect ruminal volatile fatty acids except that isobutyrate concentration was lowest on urea, intermediate on CSM, and greatest on SSBM and CM. Urinary excretion of urea N and total N was greatest on urea, intermediate on SSBM and CM, and lowest on CSM. Apparent N efficiency (milk N/N intake) was lower on the CSM diet than on the SSBM diet. Overall, production and N utilization were compromised when the diets of high-yielding dairy cows were supplemented with urea rather than true protein and the value of the true proteins, from most to least effective, was in the order CM > SSBM > CSM.  相似文献   

12.
The effect of type of grain (corn vs. barley) and amylopectin content of barley grain (normal vs. waxy) on ruminal fermentation, digestibility, and utilization of ruminal ammonia nitrogen for milk protein synthesis was studied in a replicated 3 × 3 Latin square design trial with 6 lactating dairy cows. The experimental treatments were (proportion of dietary dry matter): CORN, 40% corn grain, NBAR, 30% normal Baronesse barley:10% corn grain, and WBAR, 30% high-amylopectin (waxy) Baronesse barley:10% corn grain. All grains were steam-rolled and fed as part of a total mixed ration. The NBAR and WBAR diets resulted in increased ruminal ammonia concentrations compared with CORN (8.2, 7.4, and 5.6 mM, respectively), but other ruminal fermentation parameters were not affected. Ruminal digestibility of dietary nutrients and microbial protein synthesis in the rumen were also not affected by diet. Corn grain had greater in situ effective ruminal dry matter degradability (62.8%) than the barley grains (58.2 and 50.7%, respectively), and degradability of the normal barley starch was greater than that of the waxy barley (69.3 and 58.9%, respectively). A greater percentage of relative starch crystallinity was observed for the waxy compared with the normal barley grain. Total tract apparent digestibility of dry matter and organic matter were decreased by WBAR compared with CORN and NBAR. Total tract starch digestibility was greater and milk urea nitrogen content was lower for CORN compared with the 2 barley diets. In this study, the extent of processing of the grain component of the diet was most likely the factor that determined the diet responses. Minimal processing of barley grain (processing indexes of 79.2 to 87.9%) reduced its total tract digestibility of starch compared with steam-rolled corn (processing index of 58.8%). As a result of the increased ammonia concentration and reduced degradability of barley dry matter in the rumen, the utilization of ruminal ammonia nitrogen for microbial protein synthesis was decreased with the barley diets compared with the corn-based diet. In this study, waxy Baronesse barley was less degradable in the rumen and the total digestive tract than its normal counterpart. The most likely reasons for these effects were the differences in starch characteristics and chemical composition, and perhaps the different response to processing between the 2 barleys.  相似文献   

13.
Thirty-five lactating dairy cows throughout weeks of lactation (WOL) 16 to 30 were used to determine optimal time needed for reliable measurement of performance variables, and to classify the cows into high-, medium-, and low-efficiency groups. Individual performance variables [body weight (BW), dry matter intake (DMI), and milk production] were measured daily with a computerized monitoring system. Body condition was visually scored weekly and used to calculate retained or depleted body energy as a result of fat content change (REF). Milk composition was analyzed weekly. Body weight, DMI, and total recovered energy (RE), which represents energy in milk production plus REF, were summarized weekly. Efficiency was calculated as RE/DMI and as residual feed intake (RFI; i.e., the difference between actual and expected DMI), which was calculated from multiple linear regression of DMI dependence on BW0.75 and RE. Unexpectedly, it was found that BW did not affect DMI and RE/DMI. Changes and relative changes in phenotypic coefficient of variation and correlations among data from shortened tests ranging from 1 wk (WOL 16) to a sequence of 15-wk tests were used to determine optimal test period durations for 5 traits: BW, DMI, RE, RE/DMI, and RFI. Traits were fitted into a mixed model with repeated measures. For each week, the traits were summarized as a sequence of cumulative data, starting from WOL 16 and cumulated over periods that increased in 1-wk steps up to WOL 16 to 29. Weekly cumulations were compared with those for entire test period (WOL 16 to 30). Consistency of each cow’s efficiency classification as high, medium, or low was tested by the total-agreement procedure; the kappa index P-value was used. Throughout WOL 16 to 30, the effects of increasing test period duration on between-animal coefficient of variation differed with respect to the various performance variables and RE/DMI: it tended to change with respect to BW, did not change with respect to DMI, and decreased with respect to RE and RE/DMI. In conclusion, compared with a 15-wk study, a 2-wk study can classify RFI and RE/DMI to 3 efficiency levels, with an individual correlation coefficient of 0.6. When the study was carried out over 3 wk or more, the lowest significant index of the classification was P < 0.004, the lowest individual correlation coefficient was 0.65, and its lowest significance was P < 0.01. The current study indicated that the insignificant effect of the BW of dairy lactating cows on their DMI should be validated in more studies.  相似文献   

14.
The objective of this study was to determine the effects of supplementation of protein deficient diet with increasing amounts of urea-N on feed intake, milk yield, rumen fermentation, and nutrient digestibility in dairy cows. The hypothesis was that low rumen ammonia-N concentrations provide suboptimal conditions for rumen microbes and these conditions can be alleviated by urea-N that increases rumen ammonia-N concentrations. To evaluate this hypothesis, the diet was formulated slightly deficient with respect to rumen-degradable protein. To supplement the diet with rumen degradable N, 5 levels of urea-N (0, 17, 33, 49, and 66 g/d) were continuously infused into the rumen of 5 dairy cows according to a 5 × 5 Latin square. Increasing levels of urea-N infusion increased N intake and N excretion in urine and feces in a linear manner and tended to increase milk and milk protein yields. Feed intake and fiber digestibility were not affected by urea-N infusion levels. Rumen ammonia-N concentrations remained low (3.5 mg/100 mL) and did not respond to urea-N infusions levels between 0 to 49 g/d, whereas the highest level of urea-N (66 g/d) increased rumen ammonia-N concentration to 5.1 mg/100 mL (quadratic effect). These observations suggested that rumen microbes efficiently captured ammonia-N from rumen fluid until sufficient intracellular ammonia-N concentrations were attained, after which ammonia-N concentrations started to increase in extracellular rumen fluid. In contrast, milk urea-N concentrations increased in a curvilinear manner (cubic effect) from 4.4 to around 6 mg/100 mL for the medium levels of urea-N and then to 7.9 mg/100 mL for the highest level of urea-N infusion. The current results indicated that 18% of supplementary N intake was secreted in milk and 53% in urine. In spite of low rumen ammonia-N concentrations observed for the basal diet, it was estimated that only 43% of supplementary N was captured by rumen microbes. Estimated true digestibility for supplementary N (93%) provided further evidence that urea-N stimulated microbial N synthesis. The current results indicate that rumen ammonia-N concentration was an insensitive indicator of N deficiency at low levels of diet CP, whereas milk urea-N was responsive to diet CP concentrations at all urea-N infusion levels.  相似文献   

15.
The objective of this study was to evaluate the effects of 2 lots of barley grain cultivars differing in expected ruminal starch degradation on dry matter (DM) intake, ruminal fermentation, ruminal and total tract digestibility, and milk production of dairy cows when provided at 2 concentrations in the diet. Four primiparous ruminally cannulated (123 ± 69 d in milk; mean ± SD) and 4 multiparous ruminally and duodenally cannulated (46 ± 14 d in milk) cows were used in a 4 × 4 Latin Square design with a 2 × 2 factorial arrangement of treatments with 16-d periods. Primiparous and multiparous cows were assigned to different squares. Treatments were 2 dietary starch concentrations (30 vs. 23% of dietary DM) and 2 lots of barley grain cultivars (Xena vs. Dillon) differing in expected ruminal starch degradation. Xena had higher starch concentration (58.7 vs. 50.0%) and greater in vitro 6-h starch digestibility (78.0 vs. 73.5%) compared with Dillon. All experimental diets were formulated to supply 18.3% crude protein and 20.0% forage neutral detergent fiber. Dry matter intake and milk yield were not affected by treatment. Milk fat concentration (3.55 vs. 3.29%) was greater for cows fed Dillon compared with Xena, but was not affected by dietary starch concentration. Ruminal starch digestion was greater for cows fed high-starch diets compared with those fed low-starch diets (4.55 vs. 2.49 kg/d), and tended to be greater for cows fed Xena compared with those fed Dillon (3.85 vs. 3.19 kg/d). Ruminal acetate concentration was lower, and propionate concentration was greater, for cows fed Xena or high-starch diets compared with cows fed Dillon or low-starch diets, respectively. Furthermore, cows fed Xena or high-starch diets had longer duration that ruminal pH was below 5.8 (6.6 vs. 4.0 and 6.4 vs. 4.2 h/d) and greater total tract starch digestibility (94.3 vs. 93.0 and 94.3 vs. 93.0%) compared with cows fed Dillon or low-starch diets, respectively. These results demonstrate that selection of barley grain can affect milk fat production and rumen fermentation to an extent at least as great as changes in dietary starch concentration.  相似文献   

16.
Twenty-eight (8 with ruminal cannulas) lactating Holstein cows were assigned to 4 × 4 Latin squares and fed diets with different levels of rumen-degraded protein (RDP) to study the effect of RDP on production and N metabolism. Diets contained [dry matter (DM) basis] 37% corn silage, 13% alfalfa silage, and 50% concentrate. The concentrate contained solvent and lignosulfonate-treated soybean meal and urea, and was adjusted to provide RDP at: 13.2, 12.3, 11.7, and 10.6% of DM in diets A to D, respectively. Intake of DM and yield of milk, fat-corrected milk, and fat were not affected by treatments. Dietary RDP had positive linear effects on milk true protein content and microbial non-ammonia N (NAN) flow at the omasal canal, and a quadratic effect on true protein yield, with maximal protein production at 12.3% RDP. However, dietary RDP had a positive linear effect on total N excretion, with urinary N accounting for most of the increase, and a negative linear effect on environmental N efficiency (kg of milk produced per kg of N excreted). Therefore, a compromise between profitability and environmental quality was achieved at a dietary RDP level of 11.7% of DM. Observed microbial NAN flow and RDP supply were higher and RUP flow was lower than those predicted by the NRC (2001) model. The NRC (2001) model overpredicted production responses to RUP compared with the results in this study. Replacing default NRC degradation rates for protein supplements with rates measured in vivo resulted in similar observed and predicted values, suggesting that in situ degradation rates used by the NRC are slower than apparent rates in this study.  相似文献   

17.
The objective of this study was to investigate the effects of replacing barley and soybean meal with increasing levels of by-products on production, digestive, and metabolic parameters in early-mid lactation dairy cows offered perennial ryegrass-based pasture. Forty-eight (32 multiparous and 16 primiparous) dairy cows that were 64 ± 24 d in milk were assigned to 1 of 4 pasture-based dietary treatments (n = 12) in a randomized block design experiment that ran for 70 d. Treatments consisted of a perennial ryegrass-based pasture and 1 of 4 supplementary concentrates: BP35, BP55, BP75, and BP95 containing 35, 55, 75, and 95% by-products, respectively, in the concentrate on a dry matter basis. The by-products used were soyhulls, dried distillers grains, and palm kernel extract in equal proportions. Barley and soybean meal were replaced as by-product inclusion level increased. In this study, intakes of pasture dry matter (15.7 kg) and total dry matter (21.1 kg) were not affected by treatment. Similarly, milk production parameters (milk yield, milk composition, somatic cell count, and urea) were not different between treatments. Unsaturated fatty acids were lower in the milk of cows offered BP35 and BP55 compared with those offered BP75 and BP95. Concentrations of β-hydroxybutyrate, nonesterified fatty acids, and other blood metabolites were within normal range and did not differ between treatments, and cow body condition score and body weight were also not different. Equally, N was unaffected by diet. Blood urea N was lower in the BP75 group compared with BP35. This study demonstrated that barley and soybean meal can be replaced with soyhulls, dried distillers grains, and palm kernel extract without affecting milk production, digestive, or metabolic parameters in dairy cows offered a pasture-based diet.  相似文献   

18.
The objective of this study was to determine the effect of replacing on isonitrogenous and isoenergetic basis soybean meal (SBM) and corn grain with ground or rolled faba bean (FB; Vicia faba major var. Baie-Saint-Paul) in dairy cow diets (17% of diet dry matter) on nutrient digestion, rumen fermentation, N utilization, methane production, and milk performance. For this purpose, 9 lactating cows were used in a replicated 3 × 3 Latin square design (35-d period) and fed (ad libitum) a total mixed ration (forage:concentrate ratio = 59:41 on a dry matter basis). In the concentrate portion, SBM and corn grain (control diet) were completely and partially replaced, respectively, with either ground or rolled FB. Ruminal degradability (in sacco) of crude protein was higher for ground FB (79.4%) compared with SBM (53.3%) and rolled FB (53.2%). Including FB in the diet did not affect dry matter intake, milk production, and milk composition. Experimental treatment had no effect on total volatile fatty acid concentration, acetate-to-propionate ratio, and protozoa numbers. Compared with cows fed the control diet, ruminal NH3 concentration increased and tended to increase for cows fed ground FB and rolled FB, respectively; however, we found no difference in ruminal NH3 concentration between the 2 processed FB. Apparent total-tract digestibility of crude protein was similar between cows fed the control diet and cows fed rolled FB and tended to increase for cows fed ground FB compared with cows fed the control diet. Feeding rolled FB decreased CP digestibility compared with feeding ground FB. Urinary and manure (feces + urine) N excretion (g/d or as a proportion of N intake) were not affected by the inclusion of FB in the diet. Enteric CH4 production was similar among the experimental diets. Results from this study show that including FB (17% of dietary dry matter) at the expense of SBM and corn grain in the diet had no effect on milk production, N excretion, and enteric CH4 production of dairy cows.  相似文献   

19.
The aim was to study the effects of rumen N balance (RNB), dietary protein source, and their interaction on feed intake, N partitioning, and rumen microbial crude protein (MCP) synthesis in lactating dairy cows. Twenty-four lactating Holstein cows were included in a replicated 4 × 4 Latin square experimental design comprising four 20-d periods, each with 12 d of adaptation to the experimental diets and 8 d of sampling. The dietary treatments followed a 2 × 2 factorial arrangement (i.e., 4 treatments) with 2 main protein sources [faba bean grain (FB) and SoyPass (SP; Beweka Kraftfutterwerk GmbH, Heilbronn, Germany)] offered at 2 dietary RNB levels each [0 g/kg of dry matter, DM (RNB0) and ?3.2 g/kg of DM (RNB?)]. The RNB was calculated as the difference between dietary crude protein (CP) intake and the rumen outflow of undegraded feed CP and MCP and divided by 6.25. Composition of concentrate mixtures was adjusted to create diets with desired RNB levels. Each of these protein sources supplied ≥35% of total dietary CP. Both diets for each protein source were isoenergetic but differed in CP concentrations. The DM intake (kg/d) was lower for RNB? than for RNB0 in diets containing FB, whereas no differences were seen between the RNB levels for SP diets. The RNB? decreased N intake and urinary N excretion but increased milk N use efficiency in both FB and SP diets, with greater differences between the RNB levels for FB diets than for SP diets. Similarly, duodenal MCP synthesis (g/kg of digestible organic matter intake) estimated from purine derivatives in the urine was lower for RNB? than for RNB0 in FB diets but similar between the RNB levels in diets containing SP. Low RNB of approximately ?65 g/d (approximately ?3.2 g/kg of DM) in diets reduced feed intake, N balance, and performance in high-yielding dairy cows with possibly more pronounced effects in diets containing rapidly degradable protein sources.  相似文献   

20.
《Journal of dairy science》2023,106(7):4608-4621
The aim of this trial was to determine the effect of a garlic and citrus extract supplement (GCE) on the performance, rumen fermentation, methane emissions, and rumen microbiome of dairy cows. Fourteen multiparous Nordic Red cows in mid-lactation from the research herd of Luke (Jokioinen, Finland) were allocated to 7 blocks in a complete randomized block design based on body weight, days in milk, dry matter intake (DMI), and milk yield. Animals within each block were randomly allocated to a diet with or without GCE. The experimental period for each block of cows (one for each of the control and GCE groups) consisted of 14 d of adaptation followed by 4 d of methane measurements inside the open circuit respiration chambers, with the first day being considered as acclimatization. Data were analyzed using the GLM procedure of SAS (SAS Institute Inc.). Methane production (g/d) and methane intensity (g/kg of energy-corrected milk) were lower by 10.3 and 11.7%, respectively, and methane yield (g/kg of DMI) tended to be lower by 9.7% in cows fed GCE compared with the control. Dry matter intake, milk production, and milk composition were similar between treatments. Rumen pH and total volatile fatty acid concentrations in rumen fluid were similar, whereas GCE tended to increase molar propionate concentration and decrease the molar ratio of acetate to propionate. Supplementation with GCE resulted in greater abundance of Succinivibrionaceae, which was associated with reduced methane. The relative abundance of the strict anaerobic Methanobrevibacter genus was reduced by GCE. The change in microbial community and rumen propionate proportion may explain the decrease in enteric methane emissions. In conclusion, feeding GCE to dairy cows for 18 d modified rumen fermentation and microbiota, leading to reduced methane production and intensity without compromising DMI or milk production in dairy cows. This could be an effective strategy for enteric methane mitigation of dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号