首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The objectives of this study were to calculate the heritability of feed efficiency and residual feed intake, and examine the relationships between feed efficiency and other traits of productive and economic importance. Intake and body measurement data were collected monthly on 970 cows in 11 tie-stall herds for 6 consecutive mo. Measures of efficiency for this study were: dry matter intake efficiency (DMIE), defined as 305-d fat-corrected milk (FCM)/305-d DMI, net energy for lactation efficiency (NELE), defined as 305-d FCM/05-d NEL intake, and crude protein efficiency (CPE), defined as 305-d true protein yield/305-d CP intake. Residual feed intake (RFI) was calculated by regressing daily DMI on daily milk, fat, and protein yields, body weight (BW), daily body condition score (BCS) gain or loss, the interaction between BW and BCS gain or loss, and days in milk (DIM). Data were analyzed with 3- and 4-trait animal models and included 305-d FCM or protein yield, DM, NEL, or CP intake, BW, BCS, BCS change between DIM 1 and 60, milk urea nitrogen, somatic cell score, RFI, or an alternative efficiency measure. Data were analyzed with and without significant covariates for BCS and BCS change between DIM 1 and 60. The average DMIE, NELE, and CPE were 1.61, 0.98, and 0.32, respectively. Heritability of gross feed efficiency was 0.14 for DMIE, 0.18 for NELE, and 0.21 for CPE, and heritability of RFI was 0.01. Body weight and BCS had high and negative correlations with the efficiency traits (−0.64 to −0.70), indicating that larger and fatter cows were less feed efficient than smaller and thinner cows. When BCS covariates were included in the model, cows identified as being highly efficient produced 2.3 kg/d less FCM in early lactation due to less early lactation loss of BCS. Results from this study suggest that selection for higher yield and lower BW will increase feed efficiency, and that body tissue mobilization should be considered.  相似文献   

2.
The objectives of this study were to describe the associations between hypoglycemia and the onset of hyperketonemia (HYK) within the first 6 wk of lactation, to evaluate the effects of body condition score at calving on glucose concentration, and to study the effects of hypoglycemia on milk production. A total of 621 dairy cows from 6 commercial dairy farms in Germany were enrolled between 1 and 4 d in milk (DIM). Cows were tested twice weekly using an electronic handheld meter for glucose and β-hydroxybutyrate (BHB), respectively, for a period of 42 d. Hypoglycemia was defined as glucose concentration ≤2.2 mmol/L. Hyperketonemia was defined as a BHB concentration ≥1.2 mmol/L. The onset of HYK was described as early onset (first HYK event within the first 2 wk postpartum) and late onset (first HYK event in wk 3 to 6 postpartum). The effect of ketosis status on blood glucose within 42 DIM was evaluated using a generalized linear mixed model. No effect was observed of HYK on glucose concentration in primiparous cows. Multiparous cows with early-onset HYK had a lower glucose concentration (?0.21 mmol/L) compared with nonketotic cows. Overall, primiparous cows had a lower prevalence and incidence of hypoglycemia than multiparous cows. Hypoglycemia in multiparous cows was associated with higher first test-day milk production and 100 DIM milk production. In conclusion, hypoglycemia mainly occurred in multiparous cows with early-onset HYK, whereas primiparous cows were at a lower risk for hypoglycemia.  相似文献   

3.
In the transition period from late gestation to early lactation, dairy cows undergo tremendous metabolic changes. Insulin is a relevant antilipolytic factor. Decreasing serum concentrations of insulin and glucose, increasing serum concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB), and changes in body condition score (BCS) reflect the negative energy balance around calving. This study investigated peripartum metabolic adaptation in 359 primiparous and 235 multiparous German Holstein cows from a commercial dairy herd under field conditions. Body condition score was recorded and blood samples were taken 10 to 1 d prepartum, 2 to 4 d postpartum, and 12 to 20 d postpartum. Generalized mixed models and generalized estimation equations were applied to assess associations between prepartum BCS; BCS changes during the transition period; insulin, glucose, NEFA, and BHB serum concentrations; and milk yield, which was taken from an electronic milk meter from d 6 of lactation. Serum insulin concentrations of multiparous postpartum cows were lower compared with prepartum, and compared with primiparous cows. In general, primiparous cows had lower postpartum NEFA and BHB concentrations than multiparous cows. In primiparous cows, we identified a positive association between prepartum BCS and prepartum serum insulin concentration. Prepartum obese multiparous cows, but not primiparous cows, were characterized by higher postpartum serum NEFA and BHB concentrations and lower milk yield than other cows in the same parity class. Primiparous cows with a smaller degree of BCS loss during the transition period had higher postpartum insulin and lower NEFA concentrations and lower milk yield than other primiparous cows. In conclusion, primiparous cows had less lipolysis and lower milk yield than multiparous cows, associated with higher insulin concentrations. Avoiding high body condition loss during the transition period is a main factor in preventing peripartal metabolic imbalances of glucose and fat metabolism.  相似文献   

4.
《Journal of dairy science》2022,105(11):8989-9000
The objective of this study was to compare 3-breed rotational crossbred (CB) cows of the Montbéliarde, Viking Red, and Holstein (HO) breeds with HO cows fed 2 alternative diets for dry matter intake (DMI), fat plus protein production (CFP), body weight (BW), body condition score (BCS), feed efficiency, and residual feed intake (RFI) from 46 to 150 days in milk (DIM) during first lactation. The CB cows (n = 17) and HO cows (n = 19) calved from September 2019 to March 2020. Cows were fed either a traditional total mixed ration diet (TRAD) or a higher fiber, lower starch total mixed ration diet (HFLS). The HFLS had 21% more corn silage, 47% more alfalfa hay, 44% less corn grain, and 43% less corn gluten feed than the TRAD. The 2 diets were analyzed for dry matter content, crude protein, forage digestibility, starch, and net energy for lactation. The BW and BCS were recorded once weekly. Daily milk, fat, and protein production were estimated from twice monthly milk recording with random regression. Measures of efficiency were CFP per kilogram of DMI and DMI per kilogram of BW. The RFI from 46 to 150 DIM was the residual error from regression of DMI on milk energy, metabolic BW, and the energy required for change in BW. Statistical analysis of all variables included the fixed effects of diet, breed group, and the interaction of diet and breed group. The CB cows fed HFLS had less DMI (?12%) and lower DMI/BW (?14%) compared with the HO cows fed TRAD. For CFP, CB and HO cows were not different when fed TRAD or HFLS. Furthermore, the CB cows fed HFLS had higher BW (+50 kg) compared with HO cows fed HFLS. The CB cows fed TRAD had higher BCS than HO cows fed TRAD and HO cows fed HFLS (+0.46 and +0.62, respectively). The HO cows fed TRAD had more DMI (+14%) and lower CFP per kilogram of DMI (?12%) compared with the HO cows fed HFLS. In addition, mean RFI from 46 to 150 DIM was lower and more desirable for CB cows fed HFLS (?120.0 kg) compared with HO cows fed TRAD (85.3 kg). Dairy producers may feed either TRAD or HFLS to CB cows without loss of CFP.  相似文献   

5.
Objectives were to evaluate the associations between residual dry matter (DM) intake (RFI) and residual N intake (RNI) in early lactation, from 1 to 5 wk postpartum, and in mid lactation, from 9 to 15 wk postpartum, and assess production performance and risk of diseases in cows according to RFI in mid lactation. Data from 4 experiments including 399 Holsteins cows were used in this study. Intakes of DM and N, yields of milk components, body weight, and body condition were evaluated daily or weekly for the first 105 d postpartum. Milk yield by 305 d postpartum was also measured. Incidence of disease was evaluated for the first 90 d postpartum and survival up to 300 d postpartum. Residual DM and N intake were calculated in early and mid lactation as the observed minus the predicted values, which were based on linear models that accounted for major energy or N sinks, including daily milk energy or N output, metabolic body weight, and daily body energy or N changes, and adjusting for parity, season of calving, and treatment within experiment. Cows were ranked by RFI and RNI in mid lactation and categorized into quartiles (Q1 = smallest RFI, to Q4 = largest RFI). Increasing efficiency in mid lactation resulted in linear decreases in RFI (depicted from Q1 to Q4; ?0.93, ?0.05, ?0.04, and 0.98 kg/d), DMI (16.0, 16.9, 17.3, and 18.4 kg/d), net energy for lactation (NEL) intake (26.8, 28.4, 29.0, and 30.8 Mcal/d), and NEL balance (?9.0, ?8.1, ?8.2, and ?5.5 Mcal/d) during early lactation, but no differences were observed in body NEL or N changes or yield of energy-corrected milk in the first 5 wk of lactation. Residual DM intake in mid lactation was associated with RFI (Pearson r = 0.43, and Spearman ρ = 0.32) and RNI (r = 0.44, ρ = 0.36) in early lactation, and with RNI in mid lactation (r = 0.91, ρ = 0.84). Similarly, RNI in mid lactation was associated with RNI in early lactation (r = 0.42, ρ = 0.35). During the first 15 wk postpartum, more efficient cows in mid lactation consumed 3.5 kg/d less DM (Q1 = 19.3 vs. Q4 = 22.8 kg/d) and were more N efficient (Q1 = 31.6 vs. Q4 = 25.8%), at the same time that yields of milk (Q1 = 39.0 vs. Q4 = 39.4 kg/d), energy-corrected milk (Q1 = 38.6 vs. Q4 = 39.3 kg/d), and milk components did not differ compared with the quartile of least efficient cows. Furthermore, RFI in mid lactation was not associated with 305-d milk yield, incidence of diseases in the first 90 d postpartum, or survival by 300 d postpartum. Collectively, rankings of RFI and RNI are associated and repeatable across lactation stages. The most feed-efficient cows were also more N efficient in early and mid lactation. Phenotypic selection of RFI based on measurements in mid lactation is associated with improved efficiency without affecting production or health in dairy cows.  相似文献   

6.
Eighty-four Holstein cows were utilized to evaluate effects of dry period (60 d vs. 30 d), with or without estradiol cypionate (ECP) injections to accelerate mammary involution, on prepartum and postpartum dry matter intake (DMI), body weight (BW), body condition score (BCS), and subsequent milk yield (MY). Treatments were arranged in a 3 x 2 x 2 factorial design that included dry period (30 d dry, 30 d dry + ECP, and 60 d dry), prepartum and postpartum bovine somatotropin (bST; 10.2 mg/d), and prepartum anionic or cationic diets. To accelerate mammary involution, ECP (15 mg) was injected intramuscularly at dry-off. No interaction of bST or prepartum diet with dry period length was detected on BW, BCS, or MY. No significant effects of dry period length on prepartum DMI, BW, or BCS were detected. Cows with shorter dry periods maintained postpartum BCS better and tended to have greater DMI immediately postpartum. Mean daily yields of milk for dry period groups did not differ during overall lactation period (1 to 21 wk). Injection of ECP at the onset of the 30-d dry period did not affect MY. No significant differences due to dry period length were detected for milk, 3.5% FCM, or SCM yields during first 10 wk of lactation. Data indicated that a short dry period protocol can be used as a management tool with no loss in the subsequent milk production of dairy cows.  相似文献   

7.
The objective of this study was to evaluate the potential of selection for feed utilization on associated blood plasma metabolite and hormone traits. Dry matter intake (DMI) was recorded in 970 Holsteins from 11 commercial farms in Pennsylvania and used to derive dry matter efficiency (DME; fat-corrected milk yield/DMI), crude protein efficiency (CPE; protein yield/crude protein intake), and residual feed intake (RFI, defined as actual feed intake minus expected feed intake for maintenance and milk production, based on calculation of DMI adjusted for yield, body weight, and body condition score). Estimated breeding values for the 4 feed utilization traits (DMI, DME, CPE, and RFI), yield traits, body traits, and days open were standardized according to their respective genetic standard deviations. Up to 631 blood samples from 393 cows from 0 to 60 d in milk (DIM) were evaluated for blood plasma concentrations of glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHB), creatinine, urea, growth hormone (GH), 3,5,3′-triiodothyronine (T3), and other parameters. Blood plasma traits were regressed on DIM, lactation number, herd, and standardized genetic merit. Cows with higher genetic merit for yield had significantly higher concentrations of GH, NEFA (milk and protein yield), and BHB (fat yield) from 31 to 60 DIM, but lower concentrations of glucose from 0 to 30 DIM, and T3 (milk yield, 0–60 DIM). The high GH–low glucose–low T3 concentration pattern was further accentuated for cows with genetic merit for enhanced feed efficiency (higher DME and lower RFI). Cows with a genetic tendency to be thin (low body condition score) also had elevated GH concentrations, but lower blood glucose, creatinine, and T3 concentrations. Those characteristics associated with enhanced feed efficiency (higher GH and lower glucose and T3 concentrations) were unfavorably associated with fertility, as indicated by elevated days open. Elevated NEFA and BHB concentrations were also associated with extended days open. Consideration of metabolic profiles when evaluating feed efficiency might be a method of maintaining high levels of health and reproductive fitness when selecting for feed efficiency.  相似文献   

8.
Rotational 3-breed crossbred cows of Montbéliarde, Viking Red, and Holstein (CB) were compared with Holstein (HO) cows for alternative measures of feed efficiency as well as income over feed cost (IOFC) and residual feed intake (RFI) during the first 150 d of first, second, and third lactations. Primiparous and multiparous CB (n = 63 and n = 43, respectively) and HO (n = 60 and n = 37, respectively) cows were fed the same total mixed ration twice daily with refusals weighed once daily. Feed was analyzed for dry matter content, net energy for lactation, and crude protein content. Body weight (BW) was recorded twice weekly. Daily production of milk, fat, and protein were estimated from monthly test days with best prediction. Measures of efficiency from 4 to 150 d in milk (DIM) were feed conversion efficiency (FCE), defined as fat plus protein production (kg) per kilogram of dry matter intake (DMI); ECM/DMI, defined as kilograms of energy-corrected milk (ECM) per kilogram of DMI; net energy for lactation efficiency (NELE), defined as ECM (kg) per megacalorie of net energy for lactation intake; crude protein efficiency (CPE), defined as true protein production (kg) per kilogram of crude protein intake; and DMI/BW, defined as DMI (kg) per kilogram of BW. The IOFC was defined as revenue from fat plus protein production minus feed cost. The RFI from 4 to 150 DIM for each lactation was the residual error remaining from regression of DMI on milk energy output (Mcal), metabolic BW, and energy required for change in BW (Mcal). Statistical analysis of measures of feed efficiency and RFI for primiparous cows included the fixed effects of year of calving and breed group. For multiparous cows, statistical analysis included breed as a fixed effect and cow as a repeated effect nested within breed group. Primiparous CB cows had higher means for FCE (+5.5%), ECM/DMI (+4.0%), NELE (+4.0%), and CPE (+5.2%) and a lower mean DMI/BW (–5.3%) than primiparous HO cows. Primiparous CB cows ($875) also had higher mean IOFC than primiparous HO cows ($825). In addition, mean RFI from 4 to 150 DIM was significantly lower (more desirable) for primiparous CB cows than HO cows. Likewise, multiparous CB cows had higher means for FCE (+8.2%), ECM/DMI (+5.9%), NELE (+5.8%), and CPE (+8.1%) and a lower mean for DMI/BW (–4.8%) than multiparous HO cows. Multiparous CB cows ($1,296) also had a higher mean for IOFC than multiparous HO cows ($1,208) and a lower mean for RFI from 4 to 150 DIM than HO cows.  相似文献   

9.
The objectives of this experiment were to determine whether low doses of bovine somatotropin (bST) during the transition period and early lactation period improved dry matter intake (DMI), body weight (BW), or body condition score (BCS); provoked positive changes in concentrations of somatotropin, insulin, insulin-like growth factor-I (IGF-I), glucose, nonesterified fatty acids, and Ca; or improved milk yield (MY) response without obvious adverse effects on health status. Eighty-four multiparous Holstein cows completed treatments arranged in a 2 x 3 x 2 factorial design that included prepartum and postpartum bST, dry period (30 d dry, 30 d dry + estradiol cypionate, and 60 d dry), and prepartum anionic or cationic diets. Biweekly injections of bST began at 21 +/- 3 d before expected calving date through 42 +/- 2 d postpartum (control = 0 vs. bST = 10.2 mg of bST/d; POSILAC). At 56 +/- 2 d in milk, all cows were injected with a full dose of bST (500 mg of bST/14 d; POSILAC). During the prepartum period and during the first 28 d postpartum, no differences in mean BW, BCS, or DMI were detected between the bST treatment group and the control group. During the first 10 wk of lactation, cows in the bST treatment group had greater mean MY and 3.5% fat-corrected milk yield and lower SCC than did cows in the control group. When cows received a full dose of bST, an increase in milk production through wk 21 was maintained better by cows in the bST group. Mean concentrations of somatotropin, IGF-I, and insulin differed during the overall prepartum period (d -21 to -1). During the postpartum period (d 1 to 28), cows in the bST group had greater mean concentrations of somatotropin and IGF-I in plasma. Concentrations of Ca around calving did not differ because of bST treatment. Results suggest that changes in concentrations of blood measures provoked by injections of bST during the transition period and early lactation period resulted in improved metabolic status and production of the cows without apparent positive or negative effects on calving or health.  相似文献   

10.
Residual feed intake (RFI), as a measure of feed conversion during growth, was estimated for around 2,000 growing Holstein-Friesian heifer calves aged 6 to 9 mo in New Zealand and Australia, and individuals from the most and least efficient deciles (low and high RFI phenotypes) were retained. These animals (78 New Zealand cows, 105 Australian cows) were reevaluated during their first lactation to determine if divergence for RFI observed during growth was maintained during lactation. Mean daily body weight (BW) gain during assessment as calves had been 0.86 and 1.15 kg for the respective countries, and the divergence in RFI between most and least efficient deciles for growth was 21% (1.39 and 1.42 kg of dry matter, for New Zealand and Australia, respectively). At the commencement of evaluation during lactation, the cows were aged 26 to 29 mo. All were fed alfalfa and grass cubes; it was the sole diet in New Zealand, whereas 6 kg of crushed wheat/d was also fed in Australia. Measurements of RFI during lactation occurred for 34 to 37 d with measurements of milk production (daily), milk composition (2 to 3 times per week), BW and BW change (1 to 3 times per week), as well as body condition score (BCS). Daily milk production averaged 13.8 kg for New Zealand cows and 20.0 kg in Australia. No statistically significant differences were observed between calf RFI decile groups for dry matter intake, milk production, BW change, or BCS; however a significant difference was noted between groups for lactating RFI. Residual feed intake was about 3% lower for lactating cows identified as most efficient as growing calves, and no negative effects on production were observed. These results support the hypothesis that calves divergent for RFI during growth are also divergent for RFI when lactating. The causes for this reduced divergence need to be investigated to ensure that genetic selection programs based on low RFI (better efficiency) are robust.  相似文献   

11.
Because negative energy balance (EB) contributes to transition-period immune dysfunction in dairy cows, dietary management strategies should aim to minimize negative EB during this time. Prepartum diets that oversupply energy may exacerbate negative EB in early lactation, with detrimental effects on immune function. However, with lower body condition score (BCS) cows, it has been shown that offering concentrates in addition to a grass silage-based diet when confined during an 8-wk dry period resulted in increased neutrophil function in early lactation. The aim of this study was to examine if similar benefits occur when concentrate feeding was restricted to a 4-wk period prepartum. Twenty-six multiparous and 22 primiparous Holstein-Friesian cows were offered ad libitum access to medium-quality grass silage until 28 d before their predicted calving dates (actual mean of 32 d prepartum; standard deviation = 6.4). At this time multiparous cows had a mean BCS of 2.9 (standard deviation = 0.12) and primiparous cows a mean BCS of 3.0 (standard deviation = 0.14) on a 1 to 5 scale. Cows were then allocated in a balanced manner to 1 of 2 treatments (13 multiparous cows and 11 primiparous cows on each treatment): silage only (SO) or silage plus concentrates (S+C) until calving. Cows on SO were offered the same grass silage ad libitum. Cows on S+C were offered an ad libitum mixed ration of the same grass silage and additional concentrates in a 60:40 dry matter (DM) ratio, which provided a mean concentrate DM intake (DMI) of 4.5 kg/cow per d. After calving, all cows were offered a common mixed ration (grass silage and concentrates, 40:60 DM ratio) for 70 d postpartum. Offering concentrates in addition to grass silage during the 4 wk prepartum increased prepartum DMI (12.0 versus 10.1 kg/cow per d), EB (+40.0 versus +10.6 MJ/cow per d), and body weight (BW; 640 versus 628 kg), and tended to increase BCS (3.02 versus 2.97). However, postpartum DMI, milk yield, milk composition, BW change, BCS change, serum nonesterified fatty acid, and β-hydroxybutryrate concentrations, health, and corpus luteum measures were unaffected by treatment. The in vitro assays of neutrophil phagocytosis, neutrophil oxidative burst, and interferon gamma production, conducted on blood samples obtained at d 14 prepartum and d 3, 7, 14, and 21 postpartum, were unaffected by treatment. Primiparous cows had higher phagocytic fluorescence intensity at d 14 prepartum and d 3 and 7 postpartum; a higher percentage of neutrophils undergoing oxidative burst at d 3, 7, and 21 postpartum; and a higher oxidative burst fluorescence intensity at d 14 prepartum and d 7, 14, and 21 postpartum compared with multiparous cows. This suggests that neutrophil function of primiparous cows was less sensitive to the changes occurring during the transition period than that of multiparous cows. In conclusion, offering concentrates during the 4-wk period prepartum had no effect on postpartum DMI, milk yield, body tissue mobilization, EB, measures of neutrophil or lymphocyte function, health, or corpus luteum activity.  相似文献   

12.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

13.
Shortening or omitting the dry period (DP) improves energy balance (EB) in early lactation because of a reduction in milk yield. Lower milk yield results in lower energy demands and requires less energy intake. The aim of this study was to evaluate the effects of DP length and concentrate level postpartum on milk yield, feed intake, EB, and plasma metabolites between wk ?4 and 7 relative to calving of cows of second parity or higher. Holstein-Friesian dairy cows (n = 123) were assigned randomly to 1 of 2 DP lengths: 0-d DP (n = 81) or 30-d DP (n = 42). Prepartum, cows with a 0-d DP received a lactation ration based on grass silage and corn silage (6.4 MJ of net energy for lactation/kg of dry matter). Cows with a 30-d DP received a dry cow ration based on grass silage, corn silage, and straw (5.4 MJ of net energy for lactation/kg of dry matter). Postpartum, all cows received the same basal lactation ration as provided to lactating cows prepartum. Cows with a 0-d DP were fed a low level of concentrate up to 6.7 kg/d based on the requirement for their expected milk yield (0-d DP-L; n = 40) or the standard level of concentrate up to 8.5 kg/d (0-d DP-S; n = 41), which was equal to the concentrate level for cows with a 30-d DP (30-d DP-S; n = 42) based on requirements for their expected milk yield. Prepartum dry matter intake, concentrate intake, basal ration intake, energy intake, plasma β-hydroxybutyrate (BHB), and insulin concentrations were greater and plasma free fatty acids (FFA) and glucose concentrations were lower, but EB was not different in cows with a 0-d DP compared with cows with a 30-d DP. During wk 1 to 3 postpartum, milk fat yield and plasma BHB concentration were lower and dry matter intake and concentrate intake were greater in cows with a 0-d DP compared with cows with a 30-d DP. During wk 4 to 7 postpartum, fat- and protein-corrected milk (FPCM), lactose content, and lactose and fat yield were lower in 0-d DP-L or 0-d DP-S cows compared with 30-d DP-S cows. Basal ration intake, EB, body weight, plasma glucose, and insulin and insulin-like growth factor-1 concentrations were greater and plasma FFA and BHB concentrations were lower in 0-d DP-L and 0-d DP-S cows compared with 30-d DP-S cows. Concentrate and energy intake were lower in 0-d DP-L cows than in 0-d DP-S or 30-d DP-S cows. Milk yield and concentrations of plasma metabolites did not differ in wk 4 to 7, although EB was lower in wk 6 and 7 postpartum in 0-d DP-L cows than in 0-d DP-S cows. In conclusion, a 0-d DP reduced milk yield and improved EB and metabolic status of cows in early lactation compared with a 30-d DP. Reducing the postpartum level of concentrate of cows with a 0-d DP did not affect fat- and protein-corrected milk yield or plasma FFA and BHB concentrations in early lactation but did reduce EB in wk 6 and 7 postpartum.  相似文献   

14.
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d −2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d −18, −9, −5, and −2. Plasma tumor necrosis factor-α concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.  相似文献   

15.
Most dairy cows experience a period of energy deficit in early lactation, resulting in increased plasma concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB). Our objectives were to determine (1) the diurnal variation in plasma BHB and NEFA, (2) the correlation between plasma NEFA and BHB when accounting for diurnal changes, and (3) the effect of hyperketonemia (HYK) on the diurnal pattern of blood metabolites. Jugular catheters were placed in 28 multiparous Holstein cows between 3 and 9 days in milk, and blood samples were collected every 2 h for 96 h. Cows were retrospectively classified as HYK positive (HYK; n = 13) if they had plasma BHB concentrations ≥1.2 mmol/L for ≥3 study days, or HYK negative (non-HYK; n = 15) if they had plasma BHB concentrations ≥1.2 mmol/L for ≤2 study days. Generalized linear mixed models were used to analyze concentrations of analytes over time and differences in metabolites between HYK groups. The correlation between total plasma NEFA and BHB was analyzed by calculating the area under the curve for plasma NEFA and BHB for all cows. Plasma NEFA reached a peak approximately 2 h before morning feed delivery, falling to a nadir in the late evening. Plasma BHB was at a nadir at the time of morning feed delivery, peaking 4 h later. We observed a strong positive correlation between daily plasma NEFA and BHB. Additionally, HYK cows had greater concentrations of plasma NEFA and BHB than non-HYK cows. The HYK cows also experienced a greater magnitude of change in BHB throughout the day than the non-HYK cows. Our results suggest that the time relative to feeding should be considered when analyzing plasma metabolites, as classification of energy status may change throughout a day.  相似文献   

16.
Associations were examined between components and indicators of early lactation energy balance (EB) and measures of fertility in Holstein cows. Milk production, dry matter intake (DMI), body condition score (BCS), and endocrine and metabolite data from 96 cows were analyzed using multivariate logistic regression and survival analysis. Fertility variables investigated were interval to commencement of luteal activity (C-LA), calving to conception interval (CCI), and conception rate to first service (CON1). Mean daily EB, milk protein content, and DMI during the first 28 d in milk were associated positively with CON1. Cows having poorer BCS (≤2.25) at first service had a lower CON1. Positive associations were identified among EB, milk protein content, DMI, and the likelihood of a shorter interval to C-LA. Cows having greater DMI and a more positive EB had an increased likelihood of a shorter CCI, whereas a lower nadir BCS was associated with an increased likelihood of a longer CCI. Milk yield was not associated with any of the fertility variables investigated. A greater plasma concentration of insulin-like growth factor I (IGF-I) during the first 2 wk of lactation was associated with a greater CON1 and an increased likelihood of a shorter interval to C-LA. In conclusion, we identified DMI as the principal component of EB influencing subsequent fertility. Furthermore, results indicate that milk protein content and plasma IGF-I concentration in early lactation may be useful indicators of reproductive efficiency.  相似文献   

17.
Body condition change during the dry period (ΔBCS) has been associated with a myriad of transition cow diseases. We used data from 3 studies to assess the relationship between ΔBCS, feeding behavior, and body condition score (BCS) at dry-off. We also studied the mediation effect that dry matter intake (DMI) has on ΔBCS and the association between dry period feeding time and DMI. A total of 100 parous cows were enrolled in 3 studies to investigate differences in dry period diet on behavior, health, and performance pre- and postcalving. Body weight was measured and BCS was assessed by the same trained observer after dry-off and 1 wk from calving date. The ΔBCS was calculated by subtracting the BCS at calving minus the BCS at dry-off. The BCS at dry-off was categorized as overconditioned (≥3.5) or not overconditioned (<3.5); no cows had a BCS <2.75. Feeding behavior data were collected using electronic feed bins. Parity at dry-off (median = 2; min = 1, max = 6) and 305-d milk production (mean = 10,235 kg, SD = 1,625 kg) from the previous lactation were considered. Data sets were split into 2 time periods: d ?56 to ?22 (early) and ?21 to 0 (late) in relation to calving. Selected feeding behaviors (DMI, DMI as a percentage of body weight, and feeding time) were used to evaluate the associations between each feeding behavior and BCS at dry-off in each period using mixed linear regression models. Each model included the following covariates: parity, previous 305-d milk yield, and trial treatment. Experimental day was included as random slope, and cow was included as random intercept. A mediation analysis was used to evaluate the potential causal direct effect of BCS at dry-off on ΔBCS and the potential indirect effect mediated by differences in DMI. The BCS at dry-off was associated with changes in feeding behavior, such that overconditioned cows had lesser daily DMI and feeding time during the early and late dry periods compared with not overconditioned animals. We also noted an effect of previous 305-d milk yield on DMI; cows that produced more milk had greater DMI throughout the dry period. The ΔBCS was only partially mediated by DMI, and BCS at dry-off still had a direct effect on ΔBCS. This result indicated that mechanisms other than DMI were associated with BCS loss during the dry period. Feeding time correlated weakly and moderately with DMI during the early and late dry periods, respectively. To conclude, strategies to improve intake during the dry period should take dry-off BCS into account or, preferably, efforts should be made to minimize the number of overconditioned cows at the end of lactation.  相似文献   

18.
Yeast cultures (Saccharomyces cerevisiae; YC) have been added to diets for dry and lactating dairy cows to attempt to improve ruminal fermentation, potentially increasing dry matter intake (DMI) and milk yield. Jersey cows (14 primigravid and 25 multigravid) were fed total mixed rations prepartum and postpartum that were either supplemented or not supplemented with YC. The YC was a dried product that was top-dressed at 60 g/d for approximately 21 d prepartum and 140 d postpartum. The DMI was increased by YC during both the last 7 d prepartum (9.8 vs. 7.7 kg) and during the first 42 d of lactation (13.7 vs. 11.9 kg). The treatment-by-day interaction was significant for DMI during the first 21 d postpartum, indicating that cows supplemented with YC increased DMI more rapidly than did nonsupplemented cows. A significant treatment-by-day interaction indicated that cows supplemented with YC lost body weight less rapidly postpartum than did non-supplemented cows. A significant interaction of treatment by day indicated that cows supplemented with YC reached peak milk production more quickly than did nonsupplemented cows. However, total milk produced during the first 140 d of lactation did not differ. Concentrations of fat, protein, lactose, total solids, and urea N in milk, as well as somatic cell count, were not significantly affected by YC. Supplementation of YC increased DMI during the transition period and increased DMI postpartum.  相似文献   

19.
Improving body condition score of thin cows in late lactation is necessary, because cows that are thin at drying off exhibit decreased fertility postpartum and are at increased risk of disease and of being culled in the subsequent lactation. Offering a diet low in crude protein (CP) content in late lactation may help to improve body condition score (BCS) at drying off, whereas imposing an extended dry period (EDP) has been advocated as another way to increase BCS at calving. To test these hypotheses, 65 thin cows (mean BCS 2.25 at 14 wk precalving) were managed on 1 of 3 treatments between 13 and 9 wk prepartum: normal protein control {NP; grass silage + 5 kg/d of a normal protein concentrate [228 g of CP/kg of dry matter (DM)]}, low protein [LP; grass silage + 5 kg/d of a low-protein concentrate (153 g of CP/kg of DM)], or EDP (cows dried off at 13 wk precalving and offered a grass silage-only diet). Both NP and LP cows were dried off at wk 8 prepartum, after which all cows were offered a grass silage-only diet until calving. After calving, all cows were offered a common diet (supplying 11.1 kg of concentrate DM/cow per day) for 19 wk. Between 13 and 9 wk prepartum, LP cows had lower DM intake, milk yield, and body weight than NP cows. Whereas EDP cows had lower serum β-hydroxybutyrate and fatty acid concentrations than those of NP cows, BCS at wk 9 prepartum did not differ between treatments. Cows on the LP treatment continued to have lower DMI and BW than those of NP and EDP cows between 8 wk prepartum and calving, but only EDP cows had a higher BCS at calving. Treatment did not affect calving difficulty score or calf birth weight. Although all cows were offered a common diet postpartum, cows on the LP treatment had lower DM intake and milk fat + plus protein yield than cows on any other treatment during the 19-wk period postpartum, but we found no differences in any postpartum indicator of body tissue reserves. The treatments imposed from wk 13 to 9 prepartum had no effect on any fertility or health parameters examined postpartum. Extending the dry period for thin cows improved their BCS at calving but did not allow these cows to achieve the target BCS of 2.75, and we found no beneficial effects of this treatment on cow performance postpartum. Offering a lower-protein diet to thin cows in late lactation did not improve BCS at calving above that of cows on a normal protein diet, but had unexplained long-term negative effects on cow performance.  相似文献   

20.
《Journal of dairy science》2022,105(5):4410-4420
The purpose of this retrospective cohort study was to evaluate the effects of the timing of hyperketonemia (HYK) diagnosis during early lactation on milk yield and composition, reproductive performance, and herd removal. Plasma β-hydroxybutyrate (BHB) was measured twice a week during the first 2 wk of lactation in 362 multiparous Holstein cows for the diagnosis of HYK. In each week, cows were diagnosed as HYK positive (HYK+) if the plasma BHB concentrations were ≥1.2 mmol/L in at least one of the tests for the week evaluated. Milk-related outcomes (first 10 monthly milk tests) included milk yield, milk fat and protein content, milk urea nitrogen (MUN), and linear score of somatic cell count. Other performance outcomes of interest included risk of pregnancy within 150 d in milk (DIM) and herd removal (i.e., culling or death) within 300 DIM. Statistical models were built separately for cows diagnosed with HYK during the first week of lactation (wk1) and for cows diagnosed during the second week of lactation (wk2). All models for wk2 were adjusted by HYK diagnosed in wk1, along with other potential confounder variables. The association between HYK in each week and milk-related outcomes was assessed using generalized estimated equation models that accounted for repeated measures. Time to pregnancy and time to herd removal were analyzed using Cox's proportional hazard regression models. Seventy-eight cows (21.5%) tested positive for HYK during wk1, 60 cows (16.6%) in wk2, and 29 cows (8.0%) in both weeks. Hyperketonemia during wk1 was associated with a milk yield reduction of 3.7 kg [95% confidence interval (CI): ?6.67 to ?0.76] per cow per day throughout the lactation. Meanwhile, we did not observe evidence of an association between HYK diagnosed during wk2 and milk yield. During the first 2 monthly milk tests, cows diagnosed as HYK+ in wk1 had greater fat (0.42%; 95% CI: 0.16 to 0.67) and MUN (0.75 mg/dL; 95% CI: 0.26 to 1.24) content in milk than HYK-negative (HYK?) cows. We did not detect any evidence of an association between HYK diagnosed in wk2 and these outcomes. The HYK+ cows in wk1 had a 30% [hazard ratio (HR) = 0.70; 95% CI: 0.48 to 1.01] lower risk of pregnancy within 150 DIM and 2.48 times (95% CI: 1.63 to 2.89) higher risk of herd removal within 300 DIM than HYK? cows. Conversely, no evidence of association was observed between HYK+ cows in wk2 and risk of pregnancy by 150 DIM (HR = 0.98; 95% CI: 0.64 to 1.51) or removal from the herd within 300 DIM (HR = 0.91; 95% CI: 0.52 to 1.60). Our findings indicate that HYK diagnosed during wk1 of lactation is associated with negative performance in terms of milk yield, reproduction, and herd removal. No evidence of association was found for the same outcomes when HYK was diagnosed in wk2. Our results suggest the need to consider the timing when HYK is diagnosed when investigating its association with performance outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号