首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Wheat (Triticum durum) was dried by immersion in a particulate medium grain dryer using natural clay, pillared aluminum clay (Al-PILC), zeolite 13X, and sand as particulate medium at different initial bed temperatures and residence times in the dryer. Results showed that zeolite caused the highest grain moisture loss for a given drying time, followed by Al-PILC, natural clay, and, finally, the sand. The drying capacity of the Al-PILC was similar to that of the zeolite. The Al-PILC transferred an amount of heat equivalent to 85–94% of the heat transferred by zeolite and evaporated 83–93% of the moisture removed by zeolite. Results also showed that the zeolite and the Al-PILC had the best heat and mass transfer properties of the four particulate materials used and that the Al-PILC can be used as an alternative of the zeolite in particulate medium immersion grain drying.  相似文献   

2.
This study was conducted to evaluate the potential of a natural zeolite (chabazite) as the particulate medium for grain drying. The granular zeolite was heated in an electric oven and mixed with grain corn. Drying experiments were conducted in a rotary batch dryer equipped with a computer and a data acquisition and control unit simulating an adiabatic process. Five initial medium temperatures (140, 160, 180, 200, and 220 °C) were used. Drying curves for grain corn and the values of effective diffusivity are reported. The amount of moisture removed and  相似文献   

3.
ABSTRACT

This study was conducted to evaluate the potential of a natural zeolite (chabazite) as the particulate medium for grain drying. The granular zeolite was heated in an electric oven and mixed with grain corn. Drying experiments were conducted in a rotary batch dryer equipped with a computer and a data acquisition and control unit simulating an adiabatic process. Five initial medium temperatures (140, 160, 180, 200, and 220 °C) were used. Drying curves for grain corn and the values of effective diffusivity are reported. The amount of moisture removed and  相似文献   

4.
High temperature particulate medium conduction grain drying is a very promising technique. However, lack of basic drying characteristic information has resulted in unsuccessful attempts to develop an efficient, economical, continuous flow dryer.

In this study, the effects of initial grain moisture content, initial medium temperature, medium particle size, medium to grain mass ratio, and contact time on the drying of shelled corn immersed in hot sand are evaluated.

Moisture losses ranged between 0.2 and 5.2 percentage points (wb).  相似文献   

5.
人们对接近新鲜状态的高质量干燥产品的需求越来越显著。当代干燥技术在提高产品质量方面有显著的进步,但在设备节能方面鲜有突破。利用沸石等吸附剂进行空气脱湿是提高干燥效率的一个很有潜力的选择。在此方法中,沸石与干燥介质空气接触,可使空气中水蒸气很快地减少到0.1ppm或露点温度降到-50℃;同时释放吸附热使得空气温度不断升高。从而,干燥器入口空气含有较多的用于干燥的显热,提高了干燥驱动力和总能效。本文讨论了沸石吸附干燥卡拉胶和玉米的应用,实验结果表明吸附干燥方法提高了产品质量,同时缩短干燥时间。然而,在商业应用之前需要进行深入的可行性研究。  相似文献   

6.
《Drying Technology》2013,31(8):1773-1788
The Two-Fluid model has been used for modeling the flow of particulate materials through pneumatic dryer. The model was solved for a one-dimensional steady-state condition and was applied to the drying process of wet PVC particles in a large-scale pneumatic dryer and to the drying process of wet sand in a laboratory-scale pneumatic dryer. A two-stage drying process was implemented. In the first drying stage, heat transfer controls evaporation from the saturated outer surface of the particle to the surrounding gas. At the second stage, the particles were assumed to have a wet core and a dry outer crust; the evaporation process of the liquid from a particle assumed to be governed by diffusion through the particle crust and by convection into the gas medium. As evaporation proceeds, the wet core shrinks while the particle dries. The drying process is assumed to stop when the moisture content of a particle falls to a predefined value or when the particle riches the exit of the pneumatic dryer. Our developed model was solved numerically and two operating conditions, adiabatic and given pneumatic dryer wall temperature, were simulated. Comparison between the prediction of the numerical models of Rocha and DryPak, (Pakowski, 1996), which were presented by Silva and Correa (1998), with the prediction of our numerical simulation reviled better agreements with DryPak then with the models of Rocha. The results of the developed model were also compared with experimental results of Baeyens et al. (1995) and Rocha.  相似文献   

7.
TWO-FLUID MODEL FOR PNEUMATIC DRYING OF PARTICULATE MATERIALS   总被引:1,自引:0,他引:1  
A. Levy  I. Borde 《Drying Technology》2001,19(8):1773-1788
The Two-Fluid model has been used for modeling the flow of particulate materials through pneumatic dryer. The model was solved for a one-dimensional steady-state condition and was applied to the drying process of wet PVC particles in a large-scale pneumatic dryer and to the drying process of wet sand in a laboratory-scale pneumatic dryer. A two-stage drying process was implemented. In the first drying stage, heat transfer controls evaporation from the saturated outer surface of the particle to the surrounding gas. At the second stage, the particles were assumed to have a wet core and a dry outer crust; the evaporation process of the liquid from a particle assumed to be governed by diffusion through the particle crust and by convection into the gas medium. As evaporation proceeds, the wet core shrinks while the particle dries. The drying process is assumed to stop when the moisture content of a particle falls to a predefined value or when the particle riches the exit of the pneumatic dryer. Our developed model was solved numerically and two operating conditions, adiabatic and given pneumatic dryer wall temperature, were simulated. Comparison between the prediction of the numerical models of Rocha and DryPak, (Pakowski, 1996), which were presented by Silva and Correa (1998), with the prediction of our numerical simulation reviled better agreements with DryPak then with the models of Rocha. The results of the developed model were also compared with experimental results of Baeyens et al. (1995) and Rocha.  相似文献   

8.
This article concerns the modelling and simulation of a deep-bed grain dryer in a large diameter-column. Two-dimensional (2D) models of deep-bed grain dryers were built by considering simultaneously momentum, heat, and mass transfer in the drying phase together with coupled heat and mass balance in the grain phase. The dynamic equations are solved numerically by using finite difference method. The momentum equations are applied to simulate pressure drop and velocity field of the drying air across the bed. The mass and heat balance in the two phases determine the profile of temperature and moisture content in both phases. Further, drying rate curves for various temperature of inlet drying gas together with moisture content of grain were simulated. The simulated profiles are in close agreement with experimental data.  相似文献   

9.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction.  相似文献   

10.
A mathematical model of temperature and wheat moisture content distribution inside a triangular spouted bed dryer was developed. The model is based on analysis of heat and mass transfer inside the dryer. In addition to that, an empirical bulk density model has been developed for wheat and included in the drying simulation. A laboratory-scale triangular spouted bed (TSB) dryer was used to dry wheat grain to validate the model. The dryer was divided into three sections, namely spouting, downcomer, and fountain. A series of drying runs were conducted to record moisture and temperature profile. There were two distinct regions observed during wheat drying. A constant rate period was observed during the initial drying stage and the falling rate period took place at the later drying stage. Initial moisture content and operating drying temperature governed the timing of transition from constant rate period to falling rate period. The model can be used to accurately predict the moisture content of wheat during drying. The temperature prediction inside the TSB dryer was less accurate, especially at high temperatures due to heat losses in the experimental dryer. Further studies are needed to improve the accuracy of this model, especially with regard to the temperature prediction.  相似文献   

11.
Pneumatic drying is a widely used process in the chemical industries and includes simultaneous conveying and heat and mass transfer between the particles and the heat gas. The increase in the use of this unit operation requires reliable mathematical models to predict processes in the industrial facilities. In the present study a Two-Fluid model has been used for modeling the flow of particulate materials through pneumatic dryer. The model was solved for a two-dimensional steady-state condition and considering axial and radial profiles for the flow variables. A two-stage drying process was implemented. In the first drying stage, heat transfer controls evaporation from the saturated outer surface of the particle to the surrounding gas. At the second stage, the particles were assumed to have a wet core and a dry outer crust; the evaporation process of the liquid from a particle is assumed to be governed by diffusion through the particle crust and by convection into the gas medium. As evaporation proceeds, the wet core shrinks while the particle dries. The numerical procedure includes discretization of calculation domain into torus-shaped final volumes, solving conservation equations by implementation of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm and controls over coupling of phases by IPSA (Interphase Slip Algorithm). The developed model was applied to simulate a drying process of wet PVC particles in a large-scale pneumatic dryer and to a drying process of wet sand in a laboratory-scale pneumatic dryer. The numerical solutions are compared successfully with the results of independent numerical and experimental investigations. Following the model validation, the two-dimensional distributions of the flow characteristics were examined.  相似文献   

12.
《Drying Technology》2013,31(9):1645-1668
Abstract

Pneumatic drying is a widely used process in the chemical industries and includes simultaneous conveying and heat and mass transfer between the particles and the heat gas. The increase in the use of this unit operation requires reliable mathematical models to predict processes in the industrial facilities. In the present study a Two-Fluid model has been used for modeling the flow of particulate materials through pneumatic dryer. The model was solved for a two-dimensional steady-state condition and considering axial and radial profiles for the flow variables. A two-stage drying process was implemented. In the first drying stage, heat transfer controls evaporation from the saturated outer surface of the particle to the surrounding gas. At the second stage, the particles were assumed to have a wet core and a dry outer crust; the evaporation process of the liquid from a particle is assumed to be governed by diffusion through the particle crust and by convection into the gas medium. As evaporation proceeds, the wet core shrinks while the particle dries. The numerical procedure includes discretization of calculation domain into torus-shaped final volumes, solving conservation equations by implementation of the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm and controls over coupling of phases by IPSA (Interphase Slip Algorithm). The developed model was applied to simulate a drying process of wet PVC particles in a large-scale pneumatic dryer and to a drying process of wet sand in a laboratory-scale pneumatic dryer. The numerical solutions are compared successfully with the results of independent numerical and experimental investigations. Following the model validation, the two-dimensional distributions of the flow characteristics were examined.  相似文献   

13.
Although mixed-flow grain dryers are widely used, there is still a need to optimize the process control as well as the dryer apparatus. Fluctuations of the grain moisture content at the dryer entrance are still a major problem resulting in quality and economic losses due to under- or overdrying. Therefore, a mathematical model for heat and mass transfer in a mixed-flow dryer has been developed. Practical drying experiments were carried out at a semi-technical dryer test station that was operated quasi-continuous. The measurements reveal the complexity of the mixed-flow drying process. First predicted results are in satisfactory agreement with data.  相似文献   

14.
Although mixed-flow grain dryers are widely used, there is still a need to optimize the process control as well as the dryer apparatus. Fluctuations of the grain moisture content at the dryer entrance are still a major problem resulting in quality and economic losses due to under- or overdrying. Therefore, a mathematical model for heat and mass transfer in a mixed-flow dryer has been developed. Practical drying experiments were carried out at a semi-technical dryer test station that was operated quasi-continuous. The measurements reveal the complexity of the mixed-flow drying process. First predicted results are in satisfactory agreement with data.  相似文献   

15.
This paper presents an Overview of particulate medium drying and heat treating of cereal grains. While the conventional air drying of grains is well documented, studies on the drying of grains using heated granular medium do not appear to exist. The scientific study of the different aspects of drying with a heated granular medium began in the early 1970's. Progress on the utilization of particle-to-particle heat transfer was slow as evidenced by the fact that there is no commercial dryer using the method as of today.

The first section of this paper deals with conduction heating and how it led to the use of granular medium in heating the grain. Starting with the earliest work on conduction heating reported by Kelly ( 1939), the developments in the heating of grain using granular media is discussed. For decades since Kelly's report, work in the subject area dealt mostly with the theoretical aspects of solid-to-solid heat transfer. Thus, in the succeeding section of the paper, heat transfer parameters and mechanisms involved in the process are thoroughly investigated.  相似文献   

16.
This paper reviews a recent development in the heat and moisture transfer modeling for drying single layes of agricultural grains. A diffusion model with time-varying boundary condition predicts the complex shape of the drying curve well. A conduction model with evaporating boundary condition, when used with the Gamson correlation for convective heat transfer coefficient, accurately predicts experimental grain surface temperature. The new modewls were tested experimentally, drying wheat and barley in a thin-layer dryer useing 40 to 175 c air and the initial moisture ranging from 0.20 to 0.40 (decimal dry basis). It is shown that grain temperatures calculated by the conduction heat equation, when used in conjunction with a probit-type germination loss model, predict germination values different from those predicted by the lump heat equation.  相似文献   

17.
The diiffusion model describing internal diiffusion of moisture within a grain kernel during drying and tempering stages was incorporated in the cross-flow drying model to simulate the recirculating circular grain dryer with drying and tempering stages. Experiments were conducted on an experimental prototype recirculating circular grain dryer for wheat and rough rice drying. The simulated grain temperature and moisture content were compared with the experimental data of drying wheat and rough rice, the maximum deviation of the outlet grain temperature was 5°C and the maximum deviation ofthe final grain moisture content was 0.3% w.b. The simulating program for recirculating circular grain dryer was used for analyzing the effects of structure parameters and hot air parameters on the dryer performance. Recommendations for design of the recirculating circular grain dryers are drawn from the experiments and simulation.  相似文献   

18.
ABSTRACT

This paper reviews a recent development in the heat and moisture transfer modeling for drying single layes of agricultural grains. A diffusion model with time-varying boundary condition predicts the complex shape of the drying curve well. A conduction model with evaporating boundary condition, when used with the Gamson correlation for convective heat transfer coefficient, accurately predicts experimental grain surface temperature. The new modewls were tested experimentally, drying wheat and barley in a thin-layer dryer useing 40 to 175 c air and the initial moisture ranging from 0.20 to 0.40 (decimal dry basis). It is shown that grain temperatures calculated by the conduction heat equation, when used in conjunction with a probit-type germination loss model, predict germination values different from those predicted by the lump heat equation.  相似文献   

19.
ABSTRACT

This paper presents an Overview of particulate medium drying and heat treating of cereal grains. While the conventional air drying of grains is well documented, studies on the drying of grains using heated granular medium do not appear to exist. The scientific study of the different aspects of drying with a heated granular medium began in the early 1970's. Progress on the utilization of particle-to-particle heat transfer was slow as evidenced by the fact that there is no commercial dryer using the method as of today.

The first section of this paper deals with conduction heating and how it led to the use of granular medium in heating the grain. Starting with the earliest work on conduction heating reported by Kelly ( 1939), the developments in the heating of grain using granular media is discussed. For decades since Kelly's report, work in the subject area dealt mostly with the theoretical aspects of solid-to-solid heat transfer. Thus, in the succeeding section of the paper, heat transfer parameters and mechanisms involved in the process are thoroughly investigated.  相似文献   

20.
This paper presents the analysis of a coupled heat and mass transfer process in a fixed-bed solar grain dryer. Measurements of moisture concentration and air humidity along with temperature measurements were carried out in a solar grain dryer located in Port Harcourt, Nigeria, at the latitude of 4.858°N and longitude of 8.372°E. The process was also modelled, mathematically, by a set of partial differential equations that were coupled within the grain and through the grain boundary with the hot drying air. A finite difference scheme was used to obtain the moisture concentration and air humidity, and temperature fields within the grain and drying air. There was good agreement between the theoretical and experimental results at specified Biot and Posnov numbers, and varying Fourier number. The effects of time, space, and key model parameters such as the Biot and Posnov numbers and the initial conditions of the grains and drying air were simulated and discussed. The results from this study can be used to specify the design parameters for solar grain dryers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号