首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A W-band (76–77 GHz) active down-conversion mixer has been demonstrated using low leakage (higher ${rm V}_{{rm T}}$) NMOS transistors of a 65-nm digital CMOS process with 6 metal levels. It achieves conversion gain of ${-}8$ dB at 76 GHz with a local oscillation power of 4 dBm (${sim-}2$ dBm after de-embedding the on-chip balun loss), and 3 dB bandwidth of 3 GHz. The SSB noise figures are 17.8–20 dB (11.3–13.5 dB after de-embedding on-chip input balun loss) between 76 and 77 GHz. ${rm IP}_{1{rm dB}}$ is ${-}6.5$ dBm and IIP3 is 2.5 dBm (${sim-}13$ and ${sim}-4$ dBm after de-embedding the on-chip balun loss). The mixer consumes 5 mA from a 1.2 V supply.   相似文献   

2.
A compact and broadband 0.8–77.5-GHz passive distributed drain mixer using standard 0.13-$mu$ m CMOS technology is presented in this paper. To extend the operation bandwidth, a uniform distributed topology is utilized for wideband matching. This paper also analyzes the device size and number of stages for the bandwidth of the CMOS distributed drain mixer. To optimize the conversion gain performance of the CMOS drain mixer, a gate bias optimization method is proposed and successfully implemented in the mixer design. This mixer consumes zero dc power and exhibits a measured conversion loss of ${hbox{5.5}} pm {hbox{1}}$ dB from 0.8 to 77.5 GHz with a compact size of 0.67$,times,$ 0.58 mm$^{2}$ . The output 1-dB compression point is ${-}{hbox{8.5}}$ dBm at 20 GHz. To best of our knowledge, this monolithic microwave integrated circuit has the widest operation bandwidth among CMOS wideband mixers to date with good conversion efficiency and zero dc power consumption.   相似文献   

3.
A linearization technique is proposed in which low-frequency second-order-intermodulation $({rm IM}_{2})$ is generated and injected to suppress the third-order intermodulation $({rm IM}_{3})$. The proposed linearization technique is applied to both a low-noise amplifier (LNA) and a down-conversion mixer in an RF receiver front-end (RFE) working at 900 MHz. Fabricated in a 0.18$ mu{hbox{m}}$ CMOS process and operated at 1.5 V supply with a total current of 13.1 mA, the RFE delivers 22 dB gain with 5.3 dB noise figure (NF). The linearization technique achieves around 20 dB ${rm IM}_{3}$ suppression and improves the RFE's ${rm IIP}_{3}$ from $-$ 10.4 dBm to 0.2 dBm without gain reduction and noise penalty while requiring only an extra current of 0.1 mA.   相似文献   

4.
A four-element phased-array front-end receiver based on 4-bit RF phase shifters is demonstrated in a standard 0.18- $mu{{hbox{m}}}$ SiGe BiCMOS technology for $Q$-band (30–50 GHz) satellite communications and radar applications. The phased-array receiver uses a corporate-feed approach with on-chip Wilkinson power combiners, and shows a power gain of 10.4 dB with an ${rm IIP}_{3}$ of $-$13.8 dBm per element at 38.5 GHz and a 3-dB gain bandwidth of 32.8–44 GHz. The rms gain and phase errors are $leq$1.2 dB and $leq {hbox{8.7}}^{circ}$ for all 4-bit phase states at 30–50 GHz. The beamformer also results in $leq$ 0.4 dB of rms gain mismatch and $leq {hbox{2}}^{circ}$ of rms phase mismatch between the four channels. The channel-to-channel isolation is better than $-$35 dB at 30–50 GHz. The chip consumes 118 mA from a 5-V supply voltage and overall chip size is ${hbox{1.4}}times {hbox{1.7}} {{hbox{mm}}}^{2}$ including all pads and CMOS control electronics.   相似文献   

5.
A self-oscillating mixer that employs both the fundamental and harmonic signals generated by the oscillator subcircuit in the mixing process is experimentally demonstrated. The resulting circuit is a dual-band down-converting mixer that can operate in $C$ -band from 5.0 to 6.0 GHz, or in $X$-band from 9.8 to 11.8 GHz. The oscillator uses active superharmonic coupling to enforce the quadrature relationship of the fundamental outputs. Either the fundamental outputs of the oscillator or the second harmonic oscillator output signals that exists at the common-mode nodes are connected to the mixer via a set of complementary switches. The mixer achieves a conversion gain between 5–12 dB in both frequency bands. The output 1-dB compression points for both modes of the mixer are approximately $-{hbox{5 dBm}}$ and the output third-order intercept point for $C$ -band and $X$ -band operation are 12 and 13 dBm, respectively. The integrated circuit was fabricated in 0.13-$mu {hbox{m}}$ CMOS technology and measures ${hbox{0.525 mm}}^{2}$ including bonding pads.   相似文献   

6.
A single-ended 77/79 GHz monolithic microwave integrated circuit (MMIC) receiver has been developed in SiGe HBT technology for frequency-modulated continuous-wave (FMCW) automotive radars. The single-ended receiver chip consists of the first reported SiGe 77/79 GHz single-ended cascode low noise amplifier (LNA), the improved single-ended RF double-balanced down-conversion 77/79 GHz micromixer, and the modified differential Colpitts 77/79 GHz voltage controlled oscillator (VCO). The LNA presents 20/21.7 dB gain and mixer has 13.4/7 dB gain at 77/79 GHz, and the VCO oscillates from 79 to 82 GHz before it is tuned by cutting the transmission line ladder, and it centres around 77 GHz with a tuning range of 3.8 GHz for the whole ambient temperature variation range from $- hbox{40},^{circ}{hbox{C}}$ to $+ hbox{125},^{circ}{hbox{C}}$ after we cut the lines by tungsten-carbide needles. Phase noise is $-$90 dBc/Hz@1 MHz offset. Differential output power delivered by the VCO is 5 dBm, which is an optimum level to drive the mixer. The receiver occupies 0.5 ${hbox{mm}}^{2}$ without pads and 1.26 ${hbox{mm}}^{2}$ with pads, and consumes 595 mW. The measurement of the whole receiver at 79 GHz shows 20–26 dB gain in the linear region with stable IF output signal. The input ${rm P}_{rm 1dB}$ of the receiver is $-$35 dBm.   相似文献   

7.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

8.
A Low Voltage Mixer With Improved Noise Figure   总被引:2,自引:0,他引:2  
A 5.2 GHz low voltage mixer with improved noise figure using TSMC 0.18 $mu$m CMOS technology is presented in this letter. This mixer utilizes current reuse and ac-coupled folded switching to achieve low supply voltage. The noise figure of the mixer is strongly influenced by flicker noise. A resonating inductor is implemented for tuning out the parasitic components, which not only can improve noise figure but also enhance conversion gain. A low voltage mixer without resonating technique has also been fabricated and measured for comparison. Simulated results reveal that flicker corner frequency is lowered. The measured results show 4.5 dB conversion gain enhancement and 4 dB reduction of noise figure. The down-conversion mixer with resonating inductor achieves 5.8 dB conversion gain, ${-}16$ dBm ${rm P}_{{rm 1dB}},$ ${-}6$ dBm ${rm IIP}_{3}$ at power consumption of 3.8 mW and 1 V supply voltage.   相似文献   

9.
A $g_{m}$-boosted resistive feedback low-noise amplifier (LNA) using a series inductor matching network and its application to a 2.4 GHz LNA is presented. While keeping the advantage of easy and reliable input matching of a resistive feedback topology, it takes an extra advantage of $g_{m}$ -boosting as in inductively degenerated topology. The gain of the LNA increases by the $Q$ -factor of the series RLC input network, and its noise figure (NF) is reduced by a similar factor. By exploiting the $g_{m}$-boosting property, the proposed fully integrated LNA achieves a noise figure of 2.0 dB, S21 of 24 dB, and IIP3 of ${- 11}~ hbox{dBm}$ while consuming 2.6 mW from a 1.2 V supply, and occupies 0.6 ${hbox {mm}}^{2}$ in 0.13-$mu{hbox {m}}$ CMOS, which provides the best figure of merit. This paper also includes an LNA of the same topology with an external input matching network which has an NF of 1.2 dB.   相似文献   

10.
This paper presents compact CMOS quadrature hybrids by using the transformer over-coupling technique to eliminate significant phase error in the presence of low-$Q$ CMOS components. The technique includes the inductive and capacitive couplings, where the former is realized by employing a tightly inductive-coupled transformer and the latter by an additional capacitor across the transformer winding. Their phase balance effects are investigated and the design methodology is presented. The measurement results show that the designed 24-GHz CMOS quadrature hybrid has excellent phase balance within ${pm}{hbox{0.6}}^{circ}$ and amplitude balance less than ${pm} {hbox{0.3}}$ dB over a 16% fractional bandwidth with extremely compact size of 0.05 mm$^{2}$. For the 2.4-GHz hybrid monolithic microwave integrated circuit, it has measured phase balance of ${pm}{hbox{0.8}}^{circ}$ and amplitude balance of ${pm} {hbox{0.3}}$ dB over a 10% fractional bandwidth with a chip area of 0.1 mm$^{2}$ .   相似文献   

11.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

12.
This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a high RF bandwidth is achieved without using inductors for bandwidth extension. By using an I/Q mixer with 25% duty-cycle LO waveform the output IF currents have also 25% duty-cycle, causing 2 times smaller DC-voltage drop after IF filtering. This allows for a 2 times increase in the impedance level of the IF filter, rendering more voltage gain for the same supply headroom. The implemented balun-LNA-I/Q-mixer topology achieves $> ,$18 dB conversion gain, a flat noise figure $≪, $5.5 dB from 500 MHz to 7 GHz, IIP2$ ={+}$20 dBm and IIP3 $={-}$3 dBm. The core circuit consumes only 16 mW from a 1.2 V supply voltage and occupies less than ${hbox{0.01~mm}}^{2}$ in 65 nm CMOS.   相似文献   

13.
We present the design and measurement results of millimeter-wave integrated circuits implemented in 65-nm baseline CMOS. Both active and passive test structures were measured. In addition, we present the design of an on-chip spiral balun and the transition from CPW to the balun and report transistor noise parameter measurement results at V-band. Finally, the design and measurement results of two amplifiers and a balanced resistive mixer are presented. The 40-GHz amplifier exhibits 14.3 dB of gain and the 1-dB output compression point is at $+$6-dBm power level using a 1.2 V supply with a compact chip area of 0.286 ${hbox{mm}}^{2}$. The 60-GHz amplifier achieves a measured noise figure of 5.6 dB at 60 GHz. The AM/AM and AM/PM results show a saturated output power of $+$7 dBm using a 1.2 V supply. In downconversion, the balanced resistive mixer achieves 12.5 dB of conversion loss and $+$5 dBm of 1-dB input compression point. In upconversion, the measured conversion loss was 13.5 dB with $-$19 dBm of 1-dB output compression point.   相似文献   

14.
The design of a 100 kHz frequency reference based on the electron mobility in a MOS transistor is presented. The proposed low-voltage low-power circuit requires no off-chip components, making it suitable for application in wireless sensor networks (WSN). After a single-point calibration, the spread of its output frequency is less than 1.1% (3$sigma $) over the temperature range from $-{hbox{22}},^{circ}{hbox{C}}$ to 85$,^{circ}{hbox{C}}$ . Fabricated in a baseline 65$~$nm CMOS technology, the frequency reference circuit occupies 0.11$ hbox{mm}^{2}$ and draws 34 $ muhbox{A}$ from a 1.2 V supply at room temperature.   相似文献   

15.
This paper presents the design and the characterization of a CMOS avalanche photodiode (APD) working as an optoelectronic mixer. The $hbox{P}^{+}hbox{N}$ photodiode has been implemented in a commercial 0.35-$muhbox{m}$ CMOS technology after optimization with SILVACO. The surface of the active region is $ hbox{3.78} cdot hbox{10}^{-3} hbox{cm}^{2}$. An efficient guard-ring structure has been created using the lateral diffusion of two n-well regions separated by a gap of 1.2 $mu hbox{m}$. When biased at $-$2 V, the best responsitivity $S_{lambda ,{rm APD}} = hbox{0.11} hbox{A/W}$ is obtained at $lambda = hbox{500} hbox{nm}$. This value can easily be improved by using an antireflection coating. At $lambda = hbox{472} hbox{nm}$, the internal gain is about 75 at $-$6 V and 157 at $-$7 V. When biased at $-$6 V, the APD achieves a dark current of 128 $muhbox{A} cdot hbox{mm}^{-2}$ and an excess noise factor $F = hbox{20}$ . Then, the APD is successfully used as an optoelectronic mixer to improve the signal-to-noise ratio of a low-voltage embedded phase-shift laser rangefinder.   相似文献   

16.
We present a high-performance 94-GHz single-balanced monolithic millimeter-wave integrated-circuit (MMIC) mixer using the disk-shaped GaAs Schottky diodes grown on an n/$hbox{n}+$ epitaxial structure. Due to the superior characteristics of the GaAs diodes with high diode-to-diode uniformity, the mixer shows a conversion loss of 5.5 dB at 94 GHz, a 1-dB compression point $(P_{1 hbox{-}{rm dB}})$ of 5 dBm, and high local-oscillator to radio-frequency isolation above 30 dB in an RF frequency range of 91–97 GHz. To our knowledge, the fabricated mixer shows the best performance in terms of conversion loss at 94 GHz and $P_{1 hbox{-}{rm dB}}$ among the W-band MMIC mixers without amplifier circuits.   相似文献   

17.
A 0.13 $mu{rm m}$ CMOS 2.4 GHz balun-mixer is proposed, where a current-reused noise-canceling topology is adopted as the transconductance stage to reduce dc power consumption. After frequency conversion, noise-cancellation is achieved only when a specified condition is satisfied, but single-to-differential signal conversion is inherently obtained by the mixer operation. The fabricated chip shows a conversion gain of 13.5 dB, a single-side-band (SSB) noise figure of 8 dB, and an input-referred ${rm IP}_{3}$ of ${- 6}~{rm dBm}$, while consuming only 3.5 mA from a 1.5 V supply voltage.   相似文献   

18.
GaInAsSb–GaSb strained quantum-well (QW) ridge waveguide diode lasers emitting in the wavelength range from 2.51 to 2.72 $ mu{hbox {m}}$ have been grown by molecular beam epitaxy. The devices show ultralow threshold current densities of 44 $hbox{A}/{hbox {cm}}^{2}$ (${L}rightarrow infty $) for a single QW device at 2.51 $ mu{hbox {m}}$, which is the lowest reported value in continuous-wave operation near room temperature (15 $^{circ}hbox{C}$) at this wavelength. The devices have an internal loss of 3 ${hbox {cm}}^{-1}$ and a characteristic temperature of 42 K. By using broader QWs, wavelengths up to 2.72 $mu{hbox {m}}$ could be achieved.   相似文献   

19.
High-electron mobility transistors (HEMTs) based on ultrathin AlN/GaN heterostructures with a 3.5-nm AlN barrier and a 3-nm $hbox{Al}_{2}hbox{O}_{3}$ gate dielectric have been investigated. Owing to the optimized AlN/GaN interface, very high carrier mobility $(sim!!hbox{1400} hbox{cm}^{2}/hbox{V}cdothbox{s})$ and high 2-D electron-gas density $(sim!!kern1pthbox{2.7} times hbox{10}^{13} /hbox{cm}^{2})$ resulted in a record low sheet resistance $(sim !!hbox{165} Omega/hbox{sq})$. The resultant HEMTs showed a maximum dc output current density of $simkern1pt$2.3 A/mm and a peak extrinsic transconductance $g_{m,{rm ext}} sim hbox{480} hbox{mS/mm}$ (corresponding to $g_{m,{rm int}} sim hbox{1} hbox{S/mm}$). An $f_{T}/f_{max}$ of 52/60 GHz was measured on $hbox{0.25} times hbox{60} muhbox{m}^{2}$ gate HEMTs. With further improvements of the ohmic contacts, the gate dielectric, and the lowering of the buffer leakage, the presented results suggest that, by using AlN/GaN heterojunctions, it may be possible to push the performance of nitride HEMTs to current, power, and speed levels that are currently unachievable in AlGaN/GaN technology.   相似文献   

20.
This letter presents a circuit to provide binary phase shift keying to ultra-wideband (UWB) impulse transmitters. The circuit is based on a Gilbert-cell multiplier and uses active on-chip balun and unbalanced-to-balanced converters for single-ended to single-ended operation. Detailed measurements of the circuit show a gain ripple of $pm 1~{rm dB}$ at an overall gain of $-2~{rm dB}$, an input reflection below $-12~{rm dB}$, an output reflection below $-18~{rm dB}$, a group delay variation below 6 ps and a $-1~{rm dB}$ input compression point of more than 1 dBm in both switching states over the full 3.1–10.6 GHz UWB frequency range. A time domain measurement verifies the switching operation using an FCC-compliant impulse generator. The circuit is fabricated in a $0.8~mu {rm m}$ Si/SiGe HBT technology, consumes 31.4 mA at a 3.2 V supply and has a size of $510 times 490~mu{rm m}^{2}$ , including pads. It can be used in UWB systems using pulse correlation reception or spectral spreading.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号