首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A failure case of the low pressure blades of steam turbine is presented in this paper. The suction side of blades has been quenched to improve the erosion resistance. Cracks with different lengths were found in the quenched region of final stage blades after about 13,200 h service. The failure analysis of blades was performed in terms of composition analysis, microstructure and mechanical tests, etc. The yield strength and tensile strength conform to the corresponding standard, whereas the elongation, area reduction and impact toughness are lower than the criteria. From the crack morphology, fractography and composition analysis on the fracture surface, it was found that the failure mechanism of blades is the environment-assisted fatigue fracture. The location of fatigue crack initiation is related with the salient of blades due to the stress concentration. In order to decrease the blade cracking susceptibility, the increment of tempered temperature in both modified treatment and high-frequency hardening was recommended.  相似文献   

2.
Blades of steam turbine are very important elements in power plant turbo aggregates. If blades of turbine fail, this will provoke further failures and high economical losses. Therefore, it is crucial to perform detailed research on reasons for failure of turbine blades to increase the reliability of turbine systems. The present paper deals with numerical simulation and research of erosion over blades in a low pressure stage of K-1000-6/1500 steam turbine working in a Nuclear Power Plant. Attention is paid to the effect of the amount of moisture in the stage; to the impact of droplets' diameter, their mass flow rate and forces acting on blade surfaces, to their aerodynamic behavior and influence on the energy conversion efficiency.Specific trajectories of water particles, reasons for the occurrence of erosion wear and erosion of certain parts of the streamlined surfaces are established and discussed. An approach to obtain incidence time to erosion effects appearance is formulated and implemented in the code. Research methodology and obtained results are applicable to determine specifics of erosion effects over streamed complex surfaces; replace expensive measurements campaigns; introduce approaches to decrease wetness in the last stages of condensation turbines and prolong the reliability of blades operated in wet steam conditions.  相似文献   

3.
A last stage (L-0) turbine blades failure was experienced at the 110 MW geothermal unit after 1 year of operation period. This unit has two tandem-compound intermediate/low-pressure turbines (turbine A and turbine B) with 23 in./3600 rpm last-stage blades. There were flexible blades continuously coupled 360 degrees around the row by loose cover segment at the tip and loose sleeve and lug at the mid-span (pre-twist design). The failed blades were in the L-0 row of the LP turbine B connected to the generator. The visual examination indicated that the group of 12 L-0 blades of rotor B on the generator side was bent and another group of 5 blades at 140 degrees from the first damaged group was also bent. The cover segments were spread out from the damaged blades and had cracks. Laboratory evaluation of the cracking in the cover segments indicates the failure mechanism to be high cycle fatigue (HCF), initiating at the cover segment holes outer fillet radius. The L-0 blades failure investigation was carried out. The investigation included a metallographic analysis of the cracked cover segments and bent blades, Finite Element Method (FEM) stress and natural frequency analysis (of blades/cover segments), fracture mechanics and crack propagation analysis. This paper provides an overview of the L-0 blades failure investigation, which led to the identification of the blades vibrations within the range 250–588 Hz induced due to unstable flow excitation (stall flutter) as the primary contribution to the observed failure.  相似文献   

4.
Failure of low-pressure (LP) turbine rotor blades in low bypass military turbofan engines is a great concern for designers, manufactures, repair and overhaul agencies, operators, and airworthiness authorities. The present paper analyzes the LP turbine blade failure cases to determine its root cause. Forensic and metallurgical investigations are carried out on the failed blades. In most cases, the failure was originated from the leading edge and had propagated toward the trailing edge. Intergranular features and high oxidation on the fractured surface have been found as the cause of fatigue failure. Operation at elevated temperatures for considerable time was found responsible for these fatigue failures. Malfunction of fuel system, failure in control sensors, and nonuniformity in atomizer characteristics were the root cause of high temperature in turbine leading to the failure of blades. The paper also presents various remedial measures to address the blade failures from manufacturing and operational points of view.  相似文献   

5.
A failure investigation has been conducted on the turbine blades used in a locomotive turbochanger, which are made from K418 Ni-base superalloy. Fractography investigation on the troubled blade indicates that cracks initiated from the surface of the concave side close to the trailing edge and propagated towards to the leading edge. The multi-origin fatigue fracture is the dominant failure mechanism of the blade. Metallographic morphology typical of over-heat damage features, such as re-dissolution of the eutectic γ + γ′, melting of the local region of the grain boundary appears in the microstructure of the airfoil part of the failed blades. Appearance of over-heat damage structure in the serviced blades makes the strength of the blade material decrease intensely to initiate fatigue cracks and make one of the blades fracture first. Fragments from the blade fractured first would crash the other blades to make the blades break or bending deformation.  相似文献   

6.
This paper concerns a failure analysis case study of low-pressure turbine blades in an aero-engine. The operational condition of the engine was studied, and metallurgical investigations were carried out on two fractured blades. The failure in one blade originated at the leading edge, while in another it originated at the trailing edge then propagated in the forward direction. The crack propagation region showed mixed mode fractographic characteristics before the final failure. The mixed mode region was considered indicative of a thermo-mechanical fatigue propagation mode. Surface analysis of the blades indicated oxidation of variant thicknesses including oxide-filled intergranular cracks and grain boundary thickening beneath the oxide layer. It is considered more probable that the mechanism was more oxidation and fatigue dominated as opposed to creep-related.  相似文献   

7.
Pack aluminization of low-pressure turbine blade of an aero gas turbine engine has been carried out following a well-defined systematic procedure. The process parameters are first optimized on dummy blades, and optimized process is followed for the actual blades for evaluation and testing. Visual and binocular examination followed by metallurgical evaluation has been carried out to validate the process and to establish the adequacy and correctness of the coating. The coated blades are then evaluated through component-level test and engine-level test followed by field evaluation trials for performance and durability. The results of engine-level tests and inspection post-accelerated mission test cycles ensure that the blades with aluminide coating can withstand severe engine operating cycles without any damage or failure which otherwise would have experienced. The failure-free operation for an equivalent TBO life and post-AMT condition of blades are an indication of enhanced life of aluminide blades and prevention of failure of the turbine blades through pack aluminization.  相似文献   

8.
This paper presents an investigation into causes of failure of geothermal steam turbine blades. Several L-0 blades of geothermal steam turbines of 110 MW capacity suffered failures, causing forced outages of the turbines. To assess the causes of failure, the natural frequencies of the blades installed on the rotor were measured in the laboratory. The measured frequencies were compared with the natural frequencies calculated through a finite-element analysis (FEA) of the blade. The FEA was also used to calculate the vibratory stresses on the blade numerically. Also, the investigation analyzed the operational data and the history of the blade failures on several rotors of different units from the same system. The results of previous repairs were reviewed, and metallurgical investigations were conducted to identify the mechanical and metallurgical modes of failure. The results of the investigation showed that the fracture of two blades was attributed to installation and manufacturing errors and aggravated by general deterioration of the blades. The deterioration was caused by the erosion and corrosion process that resulted from moisture condensation in the steam.  相似文献   

9.
Failure in turbine blades can affect the safety and performance of the gas turbine engine. Results of coating decohesion, erosion and cracking at the first-stage high-pressure (HPT) blade working in gas turbine engine are being reported in this paper. This investigation was carried out for the possibility of various failure mechanisms in the thermal barrier coating exposed to high operating temperature. The blade was made of nickel-based superalloy, having directionally solidified grain structure coated with thermal barrier coatings of yttria-stabilized zirconia with EB-PVD process and platinum-modified aluminum (Pt–Al) bond coat with electro-deposition. The starting point of analysis was apparent coating decohesion close to the leading edge on the suction side of blade. The coating decohesion was found to be widening of interdiffusion zone toward the bond coat at higher operating temperature which could change the composition and induce thermal stresses in the bond coat. The erosion, cracking and decohesion of the coating on the pressure side was also observed during failure investigation. The erosion of the coating was coupled by two factors: one by increase in temperature as demonstrated by change in microstructure of the substrate and second by increase in coating inclination toward the trailing side. As a result of high operating temperature, swelling and thickening of TGO was observed due to outward diffusion of aluminum from the bond coat to form alumina (non-protective oxide) which causes internal stresses that leads to top coat decohesion and cracking. The possibility of hot corrosion was also investigated, and it was found that top coat decohesion did not involve this failure mechanism. Visual inspection, optical microscopy, scanning electron microscopy and energy-dispersive spectroscopy have been used as characterization tools.  相似文献   

10.
Turbine blades are the most critical components in any power plant. Failure in even one rogue blade out of hundreds of blades fixed on the rotor leads to colossal damage to the machine. Statistics have shown that low-pressure turbine blades in steam power plants are generally more susceptible to failure compared to high- or intermediate-pressure blades. The mechanism of failures is different in each case and is generally very complex. As a result, a large number of blade failures are not fully understood. Two primary forces acting on the blades are the steady centrifugal force due to rotation and the fluctuating steam bending force. In view of no direct access to monitor the health of the blades through vibration or other means, indirect method using non-contacting probes have been attempted and some are in use in special cases. Largely these methods are expensive and intrusive in nature. They involve placing of sensors in the narrow space inside the turbine casing, routing special signal cables with sealing arrangement and involves difficulties in analyzing shot duration signals from each rotating blades. Unless a diagnostic technique is made simple to implement and whose reliability is proven, power plants will not find it attractive to invest on upgrade for safe operation of the machine. This article is about an innovative method of detecting the presence of blade vibration in operating turbine through vibration signal analysis and prevention through process control. The method is based on vibration analysis of the turbine casing. The casing vibration includes signals associated with the blades of different stages called as blade passing frequency (BPF). When the rotating blades vibrate, the analysis of changes in the BPF is a novel way of diagnosing blade vibrations. Signals captured from operating plants have been analyzed and blade vibrations have been detected and verified with Campbell diagram. Laboratory experiments were carried out on a rotating fan to demonstrate robustness of the diagnostics tool for turbine blades.  相似文献   

11.
12.
Geothermal turbines of 110 MW were installed in the Federal Electricity Commission in Cerro Prieto Mexico, which operating time exceeds 150,000 h. Therefore, the critical components which determine the useful life of the turbine should be evaluated to determine the rehabilitation or replacement of them. The critical components are the blades of the last stage in the steam turbine. It has been observed that different blades of the turbine of 110 MW with cracks presented corrosion products, which resulted in a failure for corrosion fatigue mechanisms. In this paper, it was studied the effect of crack propagation produced in a geothermal turbine blade of the last stage, L-0, which is made of stainless steel AISI 410 exposed to corrosion under a sea water solution. The corrosion phenomena including localized corrosion suffered by the cracking sample were studied through the electrochemical noise technique in current and potential and polarization curves. The tests were conducted on pieces of blades subjected to fatigue. The results indicated that the exposure to the corrosion solution modified the width and the length of the cracks. Using a scanning electron microscopy (SEM), the surface of the crack was observed, showing that the corrosion mechanism produced a significant increment of the velocity of crack propagation and therefore, a decrement of the useful life of the material. This research will allow us to understand the corrosion process in addition to estimate the useful life of the blades when they are subjected to load cycles.  相似文献   

13.
Failure of a low pressure turbine rotor blade of an aeroengine   总被引:2,自引:0,他引:2  
During a test run of an aeroengine, a low-pressure turbine rotor blade had failed. The turbine blades were made of Ni-base superalloy of CM 247 LC grade and fabricated by DS investment casting. The blades were coated with platinum aluminide. Investigation revealed that the blade had failed by fatigue. It was concluded that the coating on the blade had developed cracks due to excessive bending/vibration, which in turn propagated by fatigue leading to the failure.  相似文献   

14.
This paper presents the results of failure investigation of an auxiliary steam turbine in a power plant. Fractures were occurred at the lacing wires in the L1 blade cascade. The failure was occurred in repaired stages of blades after 47 days of an overhaul operation period. Visual inspection showed some regular fractures in the improper brazed joints and dimensional analysis showed that the lacing wire holes in the blades of the L1 stage are smaller than the originals. Fractographic investigation of fractured surface showed that the lacing wires had been exposed to a fatigue stress phenomenon. Finite element analysis showed that there is a high stress critical point near the brazing regions in comparison with original elements. Vibration analysis was performed experimentally and computationally to find the probable intersection points between the excitation harmonics and natural frequencies of blade cascade. Experimental test results verified the FEM analyses with good agreements. Obtained results from harmonic response analysis showed an approximate resonant condition of L1 blades during the operation of boiler feed pump turbine.  相似文献   

15.
Steam turbine blades are the critical component in power plant, specifically low pressure blades are generally found to be more susceptible to failure. A mechanical, metallurgical and FEM based coupled methodology is used in the present failure investigation of low pressure steam turbine blade. The results of each investigation of turbine blade failure were then interpreted that leads to find the location of primary failure, sequence of failure and the root cause of its failure. All the three aspects of failure investigation are important in answering the questions raised for the failure and to avoid any future miss-happening.  相似文献   

16.
Steam turbines are designed to work in stable operating conditions, including speed and load, to avoid mechanical stress variations. However, sometimes failures occur in the turbine components. The components having major breakdowns for fracture, an average of 75%, are the blades of the Low Pressure (LP) stage steam turbine. These blades produce around 10% of the output power turbines and 15% in some applications of combined cycle; generally longs, with a relatively low stiffness and such blades may present problems of high stress due to centrifugal forces. In this work probabilistic design procedure was applied to the group of ten blades of the LP stage steam turbine of 110 MW, in order to compute the stress changes and reliability due to variations in: damping, natural frequencies, vibration magnitude and density. The computed vibration stresses were analyzed by applying probability distributions and statistical parameters of input and output to compute the useful life. Monte Carlo technique and stochastic finite element method (SFEM) were applied. The results show that the Monte Carlo technique and SFEM are a good approach to estimate the useful life and reliability design of those blades.  相似文献   

17.
This article investigates the root causes of the premature failure and replacement of a set of second-stage turbine blades from a heavy industrial gas turbine engine. The investigations included dye-penetrant testing, optical microscopy, X-ray diffractometry (XRD), Environmental Scanning Electron Microscopy (ESEM), and energy dispersive X-ray spectroscopy (EDS) techniques. Moreover, the effect of heat treatment process on restoring the blade microstructure so that the properties were suitable for service was also explored. As a result of the investigation, the second-stage turbine blades premature failure was attributed to the grain boundary secondary phase precipitates. These precipitates were present in the “as-found” condition of the investigated blades.  相似文献   

18.
H356汽轮机叶片在装机时发现有大量锈蚀情况.通过宏观和微观检验、化学成分分析以及能谱分析等手段对锈蚀叶片进行了全面分析,并对该叶片进行了不同环境及条件下的锈蚀试验,从而对叶片锈蚀的原因进行了分析.结果表明:叶片锈蚀为点腐蚀,叶片材料中铬含量偏低,叶片表面大面积地接触到氧化剂和活性离子(Cl-),并长期储存于湿度高于6...  相似文献   

19.
Solid Particle Erosion Testing of Helicopter Rotor Blade Materials   总被引:6,自引:0,他引:6  
The Army Research Laboratory (ARL) was asked to participate in an OSD-funded erosion effort by the Coating Technology Integration Office at Wright Patterson Air Force Base. Solid particle (sand) erosion testing was conducted by the University of Dayton Research Institute to determine the erosion resistance of materials currently used on the leading edges of Army aviation rotor blades of aircraft in Southwest Asia (SWA). This testing and evaluation was important for two reasons; first, Iraq and Afghanistan are the primary locations of our current anti-terror operations, and second, the sands within these two countries are the worst in the world from an erosion standpoint (dry conditions + freshest grains of sand + predominantly angular quartz grains + blowing winds). The sand utilized herein is considered even more erosive than the sand from these two countries, since they contain a higher concentration of quartz than the SWA sand. In 2005, observations of actual SWA field failures of helicopter rotor blade protective tapes and coatings were compared to existing state-of-the-art, laboratory-based sand erosion data during a U.S. Army sponsored program. Laboratory-produced data did not match the severity of field-use damage, even under extremely high levels of particle loading. The need to test to erosive failure representative of this environment was determined to be paramount in establishing relative performance levels of erosion resistant protective systems being screened for potential field use. The goal of this effort was to provide two synthetic sand formulas capable of testing various polymer-based candidate rotor blade protective systems to failure. The test media was derived from characterization of sand and dust materials unique to SWA. The synthetic sand mixtures developed by this effort will be incorporated in a new test protocol for sand erosion to represent a truly “worst case” test, with extended application to other aerospace components susceptible to sand erosion damage applicable to Department of Defense activities in most dry—hot desert regions. Comprehensive post-test analysis performed by ARL included: visual examination, mass loss calculations, erosion rate determination, surface roughness testing, volume loss calculations, scanning electron microscopy characterization, and metallography. As a result of post-test analysis, many trends were observed, with the results documented herein. The results of this testing have been used as a baseline for future testing of alternative materials and coating systems, and to prepare a solid particle erosion test standard (MIL-STD-3033).  相似文献   

20.
This paper presents an analysis of the cause of steam turbine blade fractures. Recently, several L-0 blades 28.5 (725 mm) long of a steam turbine fractured 5 in. (125 mm) from the blade root platform, causing the forced outage of the turbine. A finite-element analysis (FEA) of the blade was carried out in the beginning of the last decade to calculate the natural frequencies and de vibratory stresses on the blade. A telemetry test was also conducted. The current investigation analyzed the operational data during the last two years, reviewed the results of previous studies, conducted metallurgical investigations, and identified the mechanical and metallurgical modes of the failure. The results of the investigations showed that improper welding of the shroud to the blade was the principal cause of blade fracture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号