首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于有限元法的准双曲面齿轮时变啮合特性研究   总被引:2,自引:0,他引:2  
准确计算准双曲面齿轮的时变啮合参数是其系统动力学分析的基础。基于接触有限元分析原理,应用有限元分析软件ABAQUS对齿轮进行加载接触分析(Loaded tooth contact analysis,LTCA),准确计算准双曲面齿轮时变等效啮合参数,包括时变等效啮合点位置、时变等效啮合力作用方向、等效啮合力作用方向上的线位移传动误差和时变等效啮合刚度,并研究转矩大小对时变啮合参数的影响。对比有限元法与经典齿轮接触分析(Tooth contact analysis,TCA)方法求得的传动误差曲线,并对比有限元法计算与加载啮合试验获得的齿面啮合印迹,验证有限元模型和计算的正确性。该方法求得的时变等效啮合参数能够准确体现准双曲面齿轮的时变啮合特性,为进一步研究准双曲面齿轮系统动力学特性提供依据。  相似文献   

2.
廖平  魏静  张爱强  张卫青 《机械传动》2019,43(12):50-56
弧齿锥齿轮时变啮合刚度传统计算方法大多采用有限元静态分析方法,但需计算多次,且采用节点弹性变形平均值计算的单齿啮合刚度存在较大误差。为此,改进了弧齿锥齿轮时变啮合刚度计算方法,在传统计算方法上引入单个节点啮合刚度,将工作齿面各个节点啮合刚度叠加,得到单齿啮合刚度,计算精度更高;基于有限元显式动态分析计算弧齿锥齿轮时变啮合刚度和传动误差,计算1次而不需要进行多次有限元分析,减少了整个计算时间周期。研究了不同负载转矩下时变啮合刚度和传动误差变化规律,分析了接触椭圆长轴长度、接触轨迹方向两个接触参数对时变啮合刚度和传动误差的影响。研究结果表明,时变啮合刚度和传动误差随负载转矩增大而增大,但时变啮合刚度峰-峰值和传动误差峰-峰值(PPTE)随负载转矩增大而变小;随着接触椭圆长轴长度增大,时变啮合刚度和传动误差呈增大趋势;随着接触轨迹方向增大,时变啮合刚度存在突增现象,而传动误差变化很小。  相似文献   

3.
针对直齿轮副啮合过程存在时变摩擦问题,建立直齿轮副啮合模型,推导齿轮副在啮合点处的相对滑动速度、卷吸速度、滑滚比、综合曲率半径及轮齿接触压力,研究单双齿交替啮合过程中单齿承载变化下的齿面摩擦因数变化规律。基于势能法推导计及时变摩擦的直齿轮副啮合刚度解析式,分析无摩擦力、定摩擦力和时变摩擦力作用下直齿轮副啮合刚度的变化规律,进而研究时变摩擦作用下齿轮模数、齿宽、压力角、粗糙度、输入转矩等参数对直齿轮副时变啮合刚度的影响规律。研究结果表明,时变摩擦因数在单双齿交替啮合区发生突变,在节点处趋于0;摩擦力作用下单齿刚度在啮入阶段将增大,啮出阶段将减小;定摩擦力作用使啮合刚度在节点处发生突变;时变摩擦力作用使啮合刚度在单双齿交替啮合处发生突变,在节点处与无摩擦时变化规律一致;齿轮副啮合刚度随模数、齿宽增大而增大,随压力角增大而减小;啮合刚度变化量随齿面粗糙度增大而增大,随输入转矩增大而减小。  相似文献   

4.
齿轮啮合过程中齿面时变摩擦特性对齿轮性能有重要的影响,为了研究不同形貌齿面的时变摩擦特性,利用双盘摩擦试验探讨了在线接触状态下表面形貌对摩擦因数的影响,并结合ISO 25178三维表面形貌表征参数进行了分析,然后利用试验结果研究了具有不同齿面特征的齿轮在啮合过程中摩擦因数的变化情况。研究表明,载荷、卷吸速度和滑滚比对接触面间摩擦特性的影响有着不同规律,表面形貌结构对接触面润滑拖动曲线的非线性上升区有一定影响;由于表面形貌的影响,双盘试验数据模拟的齿面摩擦特性与EHL数值模型计算结果有一定差异,并且在齿轮不同啮合区域表面形貌对于齿面摩擦因数曲线的影响程度不同,研究结果将为通过表面形貌设计改善齿面摩擦性能提供理论基础。  相似文献   

5.
为了获得面齿轮传动系统真实啮合状态的时变啮合刚度,提出一种能够综合考虑齿面修形和安装误差,运用面齿轮轮齿接触分析(TCA)及承载接触分析(LTCA)技术的时变啮合刚度精确计算方法。构建了面齿轮副的TCA和LTCA模型,采用有限元和数学规划的方法获得轮齿接触变形及齿轮啮合力,计算得到面齿轮副精确时变啮合刚度,进而研究了修形参数对面齿轮系统时变啮合刚度的影响规律;在此基础上,建立了考虑时变啮合刚度以及综合传递误差等内部激励的面齿轮传动系统动力学模型,仿真了精确时变啮合刚度激励下的面齿轮传动系统振动响应,为面齿轮传动系统的动态设计提供了理论参考。  相似文献   

6.
目前,齿轮时变啮合刚度计算大多参考ISO实验值进行公式简化,该方法不能准确反映不同齿数齿轮啮合刚度的综合特性。针对此问题,利用APDL语言建立渐开线直齿轮的参数化有限元模型,通过接触分析得到轮齿接触位移值并计算刚度。该方法考虑了轮缘厚度对刚度的影响;通过最小二乘法得到直齿轮单齿刚度公式,并依此推导得到任意齿数啮合的时变啮合刚度公式;并与石川公式、势能法、Kuang方法对比,说明了各计算方法在计算时变刚度时的优缺点。将FEA公式与ISO计算单齿最大刚度的结果进行对比,验证了该刚度公式的可靠性。  相似文献   

7.
为了研究齿轮传动系统的动力学特性,采用TYCON软件建立了某变速箱的动力学模型,该模型考虑了时变啮合刚度、啮合阻尼、轮齿啮合综合误差、原动机和负载的动态输入、传动轴的扭转及弯曲刚度等因素。通过仿真,得到了多级齿轮传动系统的动态特性,包括稳态、转速波动等情况下的各轴及齿轮的转速、角加速度、转矩等参数的变化情况。并且对比分析了将原变速箱的第三轴加强和减弱两种工况。  相似文献   

8.
针对有限元法求解变厚齿轮时变啮合刚度的求解效率低、计算结果易不收敛等问题,基于切片法建立了一种考虑齿向修形的变厚齿轮时变啮合刚度求解模型,在综合考虑齿轮基圆与齿根圆之间关系的基础上,对现有的Weber能量法进行改进,并采用该方法计算了变厚齿轮的时变啮合刚度。通过建立变厚齿轮有限元分析模型,对其进行加载接触分析,计算其啮合刚度,并与所提方法进行比较,结果表明,所提方法可以有效提高计算精度,提升计算效率。在此基础上,采用集中参数法分析了变厚齿轮不同啮合参数和修形参数对时变啮合刚度的影响规律,为变厚齿轮的结构优化设计和系统动力学分析奠定了基础。  相似文献   

9.
以直齿轮副为研究对象,建立了包含时变啮合刚度、综合误差、齿侧间隙和输入转矩等因素的6自由度弯扭耦合非线性振动模型。结合分岔图和庞加莱映射图,研究了齿侧间隙、输入转矩以及二者耦合作用和主、从动轮轴承支撑刚度对系统振动特性的影响。研究表明,输入转矩一定时,随着齿侧间隙不断增大,系统通过分岔和激变从单周期响应过渡到混沌;齿侧间隙一定时,随着输入转矩不断增大,系统通过倒分岔和激变从混沌过渡到单周期响应;当输入转矩较大时,齿侧间隙对系统响应影响很小;支撑刚度较大系统响应稳定,并且从动轮轴承支撑刚度对系统振动特性影响较大。  相似文献   

10.
建立了一种综合考虑时变啮合刚度、啮合阻尼、啮合误差、齿侧间隙和输入转速等多参数的少齿差行星减速器弯扭耦合非线性动力学模型。分析计算了该减速器的啮合误差激励,根据啮合特性推导出时变啮合刚度,并建立系统多参数、多处非线性和多自由度的动力学微分方程。利用Matlab求解各参数对系统非线性振动特性的影响,最后进行实验进行分析验证不同转速、负载对系统振动特性的影响。结果表明:时变啮合刚度、啮合阻尼、齿轮误差、齿侧间隙及转速对减速器振动影响较大,振动实验结果与仿真分析趋势基本一致,验证仿真分析的正确性。  相似文献   

11.
齿轮齿条传动是一种重要的机械传动方式,其内部时变啮合刚度是一种主要的激励源,对系统振动噪声水平有着重要影响。针对齿轮齿条时变啮合刚度高效、准确的解析计算问题,提出了一种基于势能原理的铰接支撑齿条与齿轮啮合刚度解析计算方法,计算获得了不同参数下的齿轮齿条时变啮合刚度,并利用有限元法验证了建立的解析计算模型的正确性。同时,利用建立的解析计算方法分析了垂向间隙、压力角、齿条长度等参数对齿轮齿条时变啮合刚度的影响规律。结果表明,建立的解析计算方法能够准确计算齿轮齿条时变啮合刚度,为齿轮齿条传动系统动态特性分析提供了理论支撑。  相似文献   

12.
剥落故障发生时,齿轮啮合刚度变化引起的振动响应特征是实现齿轮故障诊断的重要依据。针对剥落故障对轮齿时变啮合刚度的影响,提出将势能法应用于计算剥落故障齿轮时变啮合刚度的模型。分析了故障长宽厚参数对其时变啮合刚度的影响,得出沿轴向的宽度参数对啮合刚度下降影响最为明显,厚度参数影响最小;通过势能法中5要素对比,分析出赫兹刚度和基体柔性变形刚度是影响剥落故障时变啮合刚度的关键因素,为快速求解故障刚度提供新途径。  相似文献   

13.
冯娜娜  吴海淼 《机械传动》2021,45(1):99-103
提出了一种基于计算机仿真的解析法,用于量化齿轮副在不同齿轮故障情况下的时变啮合刚度.齿轮故障在影响齿轮副传动的同时往往也伴随着刚度的降低,时变啮合刚度是状态监测和啮合齿轮副动态特性描述的一项重要参数,势能法是计算时变啮合刚度最常用的分析方法之一.采用势能法研究了含裂纹齿轮、断齿和齿面剥落等3种故障情况对于齿轮啮合刚度的...  相似文献   

14.
针对大型风力发电机组齿轮传动链动态刚度引起的机组结构振动问题,综合轮齿弯曲变形、齿根过度圆角处的基体变形和接触变形等因素,建立齿轮时变啮合刚度的量化分析模型,并与有限元动态啮合模型对比验证理论模型的正确性。在此基础上考虑齿轮时变啮合刚度和轴扭转刚度推导1.5 MW风力机传动链的动态总刚度,用于分析传动链在动态刚度下固有特性变化规律及传动链临界转速对动态刚度参数的敏感性,量化显示动态刚度幅值变化引起的临界转速波动。研究表明,齿轮时变啮合刚度的波动会引起传动链临界转速的不稳定,增大时变刚度幅值会引起转子系统临界转速的升高,但总体上啮合刚度波动对临界转速的影响处于非敏感区。本研究对揭示风力机齿轮传动链的内部刚度激励机理和实现系统动态性能优化设计提供理论依据。  相似文献   

15.
时变啮合刚度是影响齿轮传动平稳性以及振动噪声的主要因素,现代表面处理工艺在提高齿轮服役寿命的同时,改变了轮齿表面组织性态。为研究表层改性工艺对齿轮啮合时变刚度的影响,建立轮齿功能梯度有限元模型,模拟改性工艺对齿轮表层的影响,提出基于势能原理的时变啮合刚度计算方法。结果表明,表层改性工艺显著提高了齿轮的啮合刚度,强化了齿轮的使用性能。  相似文献   

16.
为研究高转速情况下时变啮合刚度和啮合冲击对斜齿轮传动振动特性的影响,以某纯电动汽车高速斜齿轮传动为研究对象,建立了弯-扭-轴动力学模型;采用改进的基于承载接触分析的计算方法获得时变啮合刚度曲线,并计算了啮合冲击时间及啮合冲击力幅值;分析了时变啮合刚度、啮合冲击以及两者综合3种激励条件下高速斜齿轮传动系统的振动特性。结果表明:时变啮合刚度激励下,在过共振区,转速变化对系统振动的影响不显著;啮合冲击激励以及综合激励条件下,系统振动随转速的升高而增大,与啮合冲击激励相比,综合激励下振动加速度增幅较缓。研究结果可为纯电动汽车高速斜齿轮传动的设计和工程应用提供参考依据。  相似文献   

17.
作为机械装备中的关键传动机构,渐开线直齿轮在啮合传动过程中,受极端工况影响,轮齿表面极易引发剥落缺陷,改变齿轮副啮合刚度,严重影响其工作性能和传动效率.针对轮齿表面剥落形貌演变过程中的齿轮副啮合刚度,以拓展后边缘线与原矩形剥落边缘线夹角描述剥落故障演变,结合势能法构建了含剥落故障齿轮副的啮合刚度计算模型.结果表明,当齿轮副发生齿面剥落时,会使剥落区域参与的啮合区间啮合刚度减小,并且随着剥落参数的增大,齿轮啮合刚度减小趋势增大;当剥落区域沿齿轮副轴向中心面不对称时,齿轮易发生扭转变形而产生扭转刚度;同时,由于摩擦力存在,剥落区域边缘会进一步拓展,使剥落区域的宽度增大,导致齿轮副时变啮合刚度曲线变化的区间范围增大.  相似文献   

18.
为研究斜齿轮副啮合过程中螺旋角与驱动扭矩对斜齿轮副动力学特性的影响,建立了基于时变啮合刚度与齿侧间隙的斜齿轮副6自由度弯扭轴耦合动力学模型.利用斜齿轮副瞬时接触线,计算理论时变啮合刚度;结合齿侧间隙函数,通过4阶龙格库塔数值积分法,求解斜齿轮副的振动响应,分析螺旋角与工况对斜齿轮副振动响应的具体影响.研究发现,随着螺旋...  相似文献   

19.
《机械传动》2015,(4):11-14
用有限元法研究了一种新齿形齿轮—微线段齿轮的时变啮合刚度,通过与渐开线齿轮的仿真对比研究,确定出微线段齿轮的时变刚度特性优于相同条件渐开线齿轮。同时,找出了微线段齿轮特殊参数对其啮合刚度的影响规律。这些发现为微线段齿轮参数优化提供了依据,也为微线段齿轮动力学研究提供了一些条件。  相似文献   

20.
为研究某混合动力汽车齿轮传动系统的动力学特性,在考虑时变啮合刚度、啮合阻尼、齿侧间隙、轴承刚度、轴承阻尼、综合误差等非线性因素的基础上,建立了整个齿轮传动系统的平移扭转动力学模型,确认时变啮合刚度和相位角对系统固有频率的影响。基于研究结果,通过改变齿轮参数使系统的固有频率有效避开啮合频率,从而改善齿轮传动系统的振动特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号