共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
针对传统以及基于深度学习的脑肿瘤MR图像分割方法存在精度低、特征信息丢失等问题,提出一种多尺度特征融合全卷积神经网络的脑肿瘤MR图像分割算法.该算法首先对脑肿瘤MR图像的4种模态进行归一化处理;将得到的结果通过多尺度特征融合全卷积神经网络(MFF-FCN).该网络是在全卷积神经网络的基础上,引入5×5、7×7大小的卷积... 相似文献
5.
前列腺核磁共振(magnetic resonance,MR)影像切片后发现有些影像 没有有效的边缘信息,这导致无法明 确定位边缘位置,进而无法分割出前列腺。同时,传统的卷积网络需要参数量庞大占用模型 的存储空间过多。本文提出了一种结合多尺度空洞可分离卷积和通道注意力的U-Net来分 割 前列腺的方法。首先,对50个3维(three-dimensional,3D)前列腺样品进行切片并对切片后图像 进行对比度增强。随 后,将处理后数据输入到残差U-Net中,使用多尺度空洞卷积和通道注意力作为编码-解 码 单元来提取特征信息。最后,使用Dice系数和豪斯多夫距离(Housdorff distance, HD)来评估分割结果。实验 在PROMISE12挑战赛数据集验证,最终Dice系数和HD分别为88.13%、14.17 mm,参数量和 存储空间降低57%。结果表明,本文方法不仅可以分割出没有有效边缘 的前列腺区域提高其分 割精度而且能有效的降低参数量和存储空间,能够应用于模糊边缘的医学图像中。 相似文献
6.
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络——多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 相似文献
7.
8.
多尺度遥感图像的非本质特征量较大,不仅易导致图像噪声较大,也增加了图像分割的难度。为充分保留分割后多尺度遥感图像的边缘特征,在U-net卷积神经网络下提出新的图像分割算法。以U-net卷积神经网络为基网,提取被分割图像特征,获得被分割图像细节信息;计算相邻像素和原始像素特征向量的欧氏距离,结合去噪算法,通过归一化参数处理,建立相似性函数,实现对多尺度遥感图像分割特征增强处理;计算分割框候选偏差值;根据U-net卷积神经网络结构确定局部最优合并区域对;计算度量区域的距离,使用全局最优区域合并方法更新分割时间复杂度,实现多尺度遥感图像整体分割。由实验结果可知,该算法能够精准确定指定建筑物位置,并保留建筑物完整边缘细节信息。 相似文献
9.
为了提高U-Net网络性能的同时尽可能减少额外计算量,本文提出了一种新的多尺度偶数卷积注意力UNet(Multiscale Even Convolution Attention U-Net,MECAU-Net)网络。该网络在编码端采用2×2偶数卷积代替3×3卷积进行特征提取,并借鉴多尺度思想,采用4×4偶数卷积将得到的信息直接传递给主干部分,以获取更全面的图像信息并减少额外计算开销,同时还采用对称填充解决偶数卷积提取信息过程中产生的偏移问题。此外,在2×2偶数卷积模块后加入卷积注意力模块,结合空间和通道注意力,在提取更丰富的信息的同时几乎不增加额外开销。最后,在两个医学图像数据集上进行仿真实验,实验结果表明提出的MECAU-Net网络相对于U-Net在稍微增加计算成本的情况下,分割性能得到了较大的提升,并比其他对比网络取得更好的分割性能的同时还降低了参数量。 相似文献
10.
针对传统基于特征提取(FB)的信号调制识别算法所存在的识别准确率低、特征提取难度大以及算法泛化性能差等问题,结合卷积神经网络(CNN)和多尺度金字塔池化(MSPP)提出一种基于MSPP-CNN的信号自动调制识别(AMR)算法。在所提出的算法中,使用多尺度金字塔池化提高模型对不同调制信号的非线性特征提取能力,使模型具有更强的特征表达和泛化性能;在CNN模型的构建过程中,使用不同的卷积、池化以及激活方法对模型进行最优化验证,从而保证模型结构以及参数的合理性。实验结果显示,所提算法在信噪比为-18 dB,0 dB,18 dB时的识别准确率分别达到56%,62.98%,92.04%;与其他传统特征提取算法以及CNN算法的大量对比试验,证明了所提算法的有效性和高识别准确率。 相似文献
11.
针对磁共振成像(magnetic resonance imaging, MRI)颅脑肿瘤区域误识别与分割网络空间信息丢失问题,提出一种基于双支路特征融合的MRI脑肿瘤图像分割方法。首先通过主支路的重构VGG与注意力模型(re-parameterization visual geometry group and attention model, RVAM)提取网络的上下文信息,然后使用可变形卷积与金字塔池化模型(deformable convolution and pyramid pooling model, DCPM)在副支路获取丰富的空间信息,之后使用特征融合模块对两支路的特征信息进行融合。最后引入注意力模型,在上采样过程中加强分割目标在解码时的权重。提出的方法在Kaggle_3m数据集和BraTS2019数据集上进行了实验验证,实验结果表明该方法具有良好的脑肿瘤分割性能,其中在Kaggle_3m上,Dice相似系数、杰卡德系数分别达到了91.45%和85.19%。 相似文献
12.
针对脑肿瘤图像分割中网络模型信息损耗、上下文信息联系不足及网络泛化能力较差导致分割精度较低的问题,提出了一种新型的脑肿瘤图像分割方法,该方法是通过深度门控卷积模块(depth gate convolution,DGC)和特征增强模块(feature enhancement module,FEM)组成的多层级连接(multi-level connection,MC)脑肿瘤分割模型。采用深度卷积模块降低特征信息在逐层传递的信息损耗;使用控制门单元(control gate unit,CGU)实现各个尺度的特征图的MC,其中组合池化来减少下采样过程中的信息丢失;通过FEM增强分割区域的特征权重。实验结果表明,预测分割脑肿瘤的整体肿瘤区(whole tumor,WT)、核心肿瘤区(tumor core,TC)和增强肿瘤区(enhancement tumor,ET)的Dice系数分别达到了0.92、0.84和0.83,Hausdorff距离达到了0.77、1.50和0.92,脑肿瘤分割精度相较于当前较多方法分割精度和计算效率较高,具有良好的分割性能。 相似文献
13.
针对传统编解码结构的医学图像分割网络存在特征信息利用率低、泛化能力不足等问题,该文提出了一种结合编解码模式的多尺度语义感知注意力网络(multi-scale semantic perceptual attention network,MSPA-Net) 。首先,该网络在解码路径加入双路径多信息域注意力模块(dual-channel multi-information domain attention module,DMDA) ,提高特征信息的提取能力;其次,网络在级联处加入空洞卷积模块(dense atrous convolution module,DAC) ,扩大卷积感受野;最后,借鉴特征融合思想,设计了可调节多尺度特征融合模块 (adjustable multi-scale feature fusion,AMFF) 和双路自学习循环连接模块(dual self-learning recycle connection module,DCM) ,提升网络的泛化性和鲁棒性。为验证网络的有效性,在CVC-ClinicDB、ETIS-LaribPolypDB、COVID-19 CHEST X-RAY、Kaggle_3m、ISIC2017和Fluorescent Neuronal Cells等数据 集上进行验证,实验结果表明,相似系数分别达到了94.96%、92.40%、99.02%、90.55%、92.32%和75.32%。因此,新的分割网络展现了良好的泛化能力,总体性能优于现有网络,能够较好实现通用医学图像的有效分割。 相似文献
14.
针对不同模态MR脑肿瘤图像呈现的肿瘤状态差异以及卷积神经网络(convolutional neural networks, CNNs)提取特征局限性的问题,提出了一种基于多模态融合的MR脑肿瘤图像分割方法。分割模型以U-net网络为原型,创新一种多模态图像融合方式以加强特征提取能力,同时引入通道交叉注意力机制(channel cross transformer, CCT)代替U-net中的跳跃连接结构,进一步弥补深浅层次的特征差距与空间依赖性,有效融合多尺度特征,加强对肿瘤的分割能力。实验在BraTS数据集上进行了多目标分割结果验证,通过定量分析对比前沿网络分割结果,表明该方法确有良好的分割性能,其分割出三种肿瘤区域的Dice系数分别达到80%、74%、71%。 相似文献
15.
针对现有脑肿瘤核磁共振成像(magnetic resonance imaging, MRI)分割神经网络的参数量和计算量较大且对肿瘤区域小目标分割精度不高的问题,提出一种改进的轻量级脑肿瘤分割网络MF-RES2Net(multiple fiber residual-like networks)。该网络以3D U-Net为基础架构,将多纤模块(multi-fiber, MF)和类残差模块(RES2)相结合代替传统卷积模块。MF将特征图像的通道进行混合,增加了通道间信息的交流融合;RES2将通道均分,单通道的卷积结果相加到相邻通道,在扩大图像感受野的同时保留了细节特征,同时降低网络参数量。此外,为改善数据不平衡问题,提出一种改进的加权损失函数,提高了网络对小目标的分割精度。将MF-RES2Net在BRATS 2019数据集进行验证,完整肿瘤、核心肿瘤和增强肿瘤分割的平均Dice系数分别为89.98%、84.02%、77.62%,参数量和浮点数分别为3.16 M和16.24 G,结果表明:该网络在降低参数量和计算量的同时进一步提升了分割性能,有效地降低了网络运行时的设备要求。 相似文献
16.
17.
18.
针对医学图像中病灶区域尺度不一、边界模糊和周围组织强度不均匀所导致的分割精度降低问题,提出了一种基于双解码器的脑肿瘤图像分割模型。为了增强特征的表征力,提出了高阶微分残差模块并使用不同空洞率的扩张卷积用于提取特征编码,提高了网络模型的分割性能;引入上下文语义信息感知模块(multi scale dilation, MSD),从不同的目标尺度中提取更多的精细信息,提高了对结构细节信息的捕获能力,同时减少了编解码器之间的特征差异;在空间解码路径中使用选择性聚合空间注意力模块(spatial aggregation attention module, SAAM),增加了对有效空间特征的权重比例,减少了无效的特征干扰。在脑肿瘤数据集上进行了实验验证,实验结果表明,所提算法的Dice系数、平均交并比、敏感性、特异性、准确率等指标分别为:93.35%、90.71%、91.15%、99.94%、96.75%。 相似文献
19.
基于深度学习的真实图像超分辨率(super-resolution, SR)重建算法目前存在参数量过大的问题,为解决该问题,提出了一种多尺度残差特征融合的轻量级真实图像SR重建算法。首先利用深度可分离卷积和复用卷积针对多尺度特征提取块进行改进,在提取特多尺度特征的同时实现了模块的轻量化,参数量仅为改进前的7.5%。其次使用残差特征融合操作将4个多尺度深度可分离特征提取块(multi-scale depthwise separable block, MSDSB)聚合成一个残差特征融合块,以减少残差路径长度。然后使用增强型注意力模块从通道和空间维度进行自适应调整以提升算法性能。最后使用自适应上采样模块获得SR重建图像。在消融实验中,本文算法重建性能超过原始算法,且参数量仅为3.53×106,是原始算法的34.5%。在对比实验中,其重建性能超过了当前主流算法,与组件分而治之(component divide-and-conquer, CDC)算法相比,PSNR和SSIM指标分别提升了0.01 dB与0.001 0,且参数量仅为组件CDC算法的8.84%,在保证重建性能的同... 相似文献
20.
一种基于脑部肿瘤MR图像的分割方法 总被引:1,自引:0,他引:1
针对传统的分割方法难以实现医学图像自动分割和准确分割的问题,提出了一种基于GVF Snake模型的医学图像分割方法。该方法采用Canny算子的边缘检测结果作为GVF扩散方程计算的边缘映射图,提高了GVF Snake模型的抗噪性能;用分水岭算法自动获取的轮廓作为GVF Snake模型分割的初始轮廓,降低了GVF力场计算的复杂性和分割时轮廓线的迭代次数。分析和实验结果表明,采用该方法对脑部肿瘤MR图像进行分割时,能自动准确地分割出肿瘤区域。 相似文献