首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
唐婷  潘新 《光电子.激光》2022,33(5):488-494
随着深度学习的不断发展,基于深度学习的机器 视觉方法被广泛应用,其中,卷积神 经网络(convolutional neural network,CNN)对高光谱图像(hyperspectral imagery,HSI ) 分类有着显著的效果。传统卷积网络中卷积核的采样位置是固定的,不能根据HSI中复杂的 空间结构而改变,忽略了数据在空间分布上的特征,为了提高高光谱图像分类在实际应用中 的性能,本文提出了一种基于可变形卷积的高光谱图像分类方法,考虑到HSI高维度的特性 , 将可变形卷积从2D引伸到3D,从而更好地提取3D空间上的特征。本文结合双分支双注意机制网络(double- branch dual-attention mechanism network,DBDA)的网络结构和3D可变形卷积,在Indi an Pines(IP)和Botswana(BS)2个数据集上进行了实验。实验结果表明,本文的方法在 综合精度(overall accuracy, OA) 、平均精度(average accuracy, AA)、KAPPA评价标准上均获得了更好的分类准确 率,相较于次优算法,OA提高了0.15%—0.23%,AA提高了0.21%, KAPPA提高了0.000—0.001。  相似文献   

2.
席磊  刘增力 《电视技术》2021,45(3):94-99
单步多框检测器(Single Shot Multibox Detector,SSD)是一种优秀的目标检测模型,但是其对额外层的处理方式还需要进一步提升.因此,利用深度可分离卷积的思想设计新的深度可分离卷积模块改进模型中的额外层,采用紧邻特征图融合方法加强特征复用,综合设计了改进的目标检测模型(Modified SSD,...  相似文献   

3.
4.
随着神经网络技术的不断发展,人体姿态识别在现实生活中扮演着越来越重要的角色,广泛应用于视频监控和智能健身等方面。为满足在移动端易集成的需求,提出一种基于Transformer的姿态识别算法。通过MobileNet中的深度可分离卷积提取特征,同时添加残差结构获取低维度信息,和Transformer的编码结构结合实现人体关键点检测。实验结果表明,训练得到的网络模型的准确率与传统的基于深度学习的姿态识别方法准确率相差不超过1%,但模型参数大幅下降,更加轻量化且便于移动端的部署。  相似文献   

5.
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。  相似文献   

6.
本文针对焊缝缺陷尺度变化不一导致的检测率效果不理想,提出了一种基于更快地区域卷积神经网络(faster region-based convolutional neural network,Faster R-CNN) 对焊缝缺陷检测的改进算法。算法利用膨胀卷积在不同扩张率下进行特征融合,结 合不同感受野下的卷积核更全面地提取不同尺度的特征信息,来提升目标的检测精度。同时 利用深度可分离卷积,来对模型进行压缩,提高检测速度。实验表明,改进后的网络在保证 运行速度的同时,能够提高检测速度,检测精度可以达到72%。  相似文献   

7.
针对基于深度学习的遥感目标检测算法参数冗余、计算量大且实时检测性能较差的问题,提出了一种基于深度可分离卷积的实时遥感目标检测算法。首先通过K-means++算法对数据集进行锚框(Anchor)聚类分析,使锚框参数更加符合遥感检测场景。为了降低模型参数量、提升检测速度,以轻量级网络MobileNetv3作为主干网络进行特征提取;此外,基于深度可分离卷积的PANet(Path Aggregation Network)结构的设计,使网络参数量进一步降低。改进后模型参数量仅为原来的18.3%,检测速度提升2.19倍,在UCAS_AOD,RSOD,DIOR这3个遥感数据集上进行测试,实验结果表明,算法鲁棒性强,能够在保证模型检测精度的同时有效提高检测实时性。  相似文献   

8.
随着人工智能的兴起,利用深度学习技术实现SAR舰船检测,能够有效避免传统的复杂特征设计,并且检测精度获得了极大的改善。然而,现如今大多数检测模型往往以牺牲检测速度为代价来提高检测精度,限制了一些SAR实时性应用,如紧急军事部署、迅速海难救援、实时海洋环境监测等。为了解决这个问题,该文提出一种基于深度分离卷积神经网络(DS-CNN)的高速高精度SAR舰船检测方法SARShipNet-20,该方法取代传统卷积神经网络(T-CNN),并结合通道注意力机制(CA)和空间注意力机制(SA),能够同时实现高速和高精度的SAR舰船检测。该方法在实时性SAR应用领域具有一定的现实意义,并且其轻量级的模型有助于未来的FPGA或DSP的硬件移植。   相似文献   

9.
计算机双目视觉从三维世界获取信息,对三维世界进行重构和感知。传统孪生卷积神经网络计算复杂,运算时间长。为满足特征实时提取,提出一种基于孪生卷积神经网络的立体匹配方法。首先通过卷积层和池化层来进行图像的深度特征提取,然后通过点积运算和函数进行分类,最后通过kitti数据集训练测试和现有的几种立体匹配的算法进行对比。实验结果表明,所提出的方法具有较好的立体匹配效果和实时性,具有一定的实用性,与NCC等匹配代价算法相比,PBM值提升了4.53%,平均视差误差提升了2.01%。  相似文献   

10.
深度可分离卷积(Depthwise Separable Convolution, DSC)的应用使得深度学习的网络模型轻量化。在此基础上,提出了嵌入注意力机制的DSC合成孔径雷达(Synthetic Aperture Radar, SAR)目标识别方法。通过将DSC与注意力机制结合,提高网络对目标重要特征的学习能力;将多个DSC进行叠加和并联,设计多尺度网络模块,增强不同深度网络的特征提取能力;通过残差连接缓解深层网络的梯度弥散和梯度爆炸问题。使用公开数据集实验表明,所提方法在网络模型参数量较小的情况下,获得99.0%的平均识别率,具有较强的识别优势。  相似文献   

11.
Deep image compression efficiency has been improved in the past years. However, to fully exploit context information for compressing image objects of different scales and shapes, more adaptive geometric structure of inputs should be considered. In this paper, we novelly introduce deformable convolution and its spatial attention extension into deep image compression task to fully exploit the context information. Specifically, a novel deep image compression network with Multi-Scale Deformable Convolution and Spatial Attention, named MS-DCSA, is proposed to better extract compact and efficient latent representation as well as reconstruct higher-quality images. First, multi-scale deformable convolution is presented to provide multi-scale receptive fields for learning spatial sampling offsets in deformable operations. Subsequently, multi-scale deformable spatial attention module is developed to generate attention masks to re-weight extracted features according to their importance. In addition, the multi-scale deformable convolution is applied to design delicate up/down sampling modules. Extensive experiments demonstrate that the proposed MS-DCSA network achieves improved performance on both PSNR and MS-SSIM quality metrics, compared to conventional as well as competing deep image compression methods.  相似文献   

12.
红外图像中的行人检测一直是计算机视觉领域的研究热点与难点。针对传统的红外行人检测方法需要人工设计目标表达特征的弊端,本文从深度学习的角度出发,提出一种可以自动构建目标表达特征的红外行人检测卷积神经网络。在对卷积神经网络的实现原理进行分析的基础上,设计了红外行人检测卷积神经网络的初始结构,然后通过实验对初始结构进行调整,得到最终的检测神经网络。对实拍红外人体数据库进行行人检测的实验结果表明,该方法在保持低虚警率的同时可以对红外图像中的行人进行稳健检测,优于传统方法。  相似文献   

13.
张建业  朴燕 《液晶与显示》2018,33(4):357-364
针对稳态匹配概率(Steady-State Matching Probability,SSMP)立体匹配算法在处理视差范围大的测试图中产生的空洞现象以及使用该算法后由于右视差图中的错误视差导致的左视差图中正确视差丢失问题,提出一种基于稳态匹配概率和半全局匹配(Semi-Global Matching,SGM)相结合的立体匹配算法。首先使用SSMP算法求取初始视差图。接着,使用基于爬山法颜色分割的填充准则进行填充。然后使用SGM算法重新获取视差图,将两幅视差图中一致的视差信息填充到经过左右一致性检测后的含有空洞的视差图中。最后,使用SSMP算法中的空洞填充和中值滤波得到精化后的视差图。实验结果表明,改进后的SSMP算法在Middlebury测试平台上第2版本的四组图像的平均匹配误差从5.38%减少到5.23%,第3版本部分测试图像的平均匹配误差从24.7%减少到21.5%,该算法能很好地处理上述问题,有效提高匹配精确度,且具有鲁棒性。  相似文献   

14.
王霏  黄俊  文洪伟 《电讯技术》2022,62(1):130-137
针对深度学习文本检测算法存在运行速度慢、模型体积大等问题,提出了基于改进的YOLOv3(You Only Look Once v3)文本检测方法(mobile-text-YOLOv3).通过深度可分离卷积思想轻量化Darknet-53网络,在高层特征借助双线性插值和偏移层使卷积核具有可变感受野,较大地改善了模型的性能;...  相似文献   

15.
由于点目标可用信息少,点目标检测技术是红外搜索与跟踪系统(IRST)中的挑战性难点.基于人工提取特征的传统目标检测,智能化水平低,对点目标检测的难度大.针对此问题,提出一种新的基于深度时空卷积神经网络的点目标检测方法.该方法采用全卷积架构,输入输出尺度相同,可用于处理任意尺度图像.为了提高实时性,卷积分解技术被引入3D...  相似文献   

16.
In the last few years, convolutional neural networks (CNNs) have demonstrated good performance while solving various computer vision problems. However, since CNNs exhibit high computational complexity, signal processing is performed on the server side. To reduce the computational complexity of CNNs for edge computing, a lightweight algorithm, such as a MobileNet, is proposed. Although MobileNet is lighter than other CNN models, it commonly achieves lower classification accuracy. Hence, to find a balance between complexity and accuracy, additional hyperparameters for adjusting the size of the model have recently been proposed. However, significantly increasing the number of parameters makes models dense and unsuitable for devices with limited computational resources. In this study, we propose a novel MobileNet architecture, in which the number of parameters is adaptively increased according to the importance of feature maps. We show that our proposed network achieves better classification accuracy with fewer parameters than the conventional MobileNet.  相似文献   

17.
近年来深度学习技术在印刷电路板(Printed Circust Boord,PCB)缺陷检测上已获得快速进步,但现有算法针对PCB图像中多尺度高密度微小缺陷目标,如何精准高效地提取特征,提高检测精度及速度依然存在巨大挑战。提出了一种可变形残差卷积与伸缩式特征金字塔的PCB缺陷检测算法。在Faster RCNN的基础上,通过引入可变形残差卷积模块替换原始VGG16网络进行通道关系校准,提高算法对复杂缺陷目标特征的语义获取能力;利用一种伸缩式改进的特征金字塔NAS-FPN网络与原区域建议RPN网络融合,以改善算法对多尺度微小缺陷目标的识别能力;结合IoU Loss、Matrix NMS等tricks组合综合优化网络的检测精度及速度。通过实验,相比原始Faster RCNN,检测精度从90.08%提升到99.41%,检测速率从4.08 frame/s提升到6.47 frame/s。该方法能实现检测精度及速度双高的PCB缺陷检测,具有一定的实际意义。  相似文献   

18.
针对图像中特征提取不均匀、单尺度超像素划分对伪造定位结果影响较大的问题,提出一种基于深度特征提取和图神经网络(graph neural network,GNN) 匹配的图像复制粘贴篡改检测(cope-move forgery detection,CMFD) 算法。首先将图像进行多尺度超像素分割并提取深度特征,为保证特征点数目充足,以超像素为单位计算特征点分布的均匀度,自适应降低特征提取阈值;随后引入新的基于注意力机制的GNN特征匹配器,进行超像素间的迭代匹配,且用随机采样一致性(random sample consensus,RANSAC) 算法消除误匹配;最后将多尺度匹配结果进行融合,精确定位篡改区域。实验表明,所提算法具有良好的性能,也证明了GNN在图像篡改检测领域的可用性。  相似文献   

19.
前列腺核磁共振(magnetic resonance,MR)影像切片后发现有些影像 没有有效的边缘信息,这导致无法明 确定位边缘位置,进而无法分割出前列腺。同时,传统的卷积网络需要参数量庞大占用模型 的存储空间过多。本文提出了一种结合多尺度空洞可分离卷积和通道注意力的U-Net来分 割 前列腺的方法。首先,对50个3维(three-dimensional,3D)前列腺样品进行切片并对切片后图像 进行对比度增强。随 后,将处理后数据输入到残差U-Net中,使用多尺度空洞卷积和通道注意力作为编码-解 码 单元来提取特征信息。最后,使用Dice系数和豪斯多夫距离(Housdorff distance, HD)来评估分割结果。实验 在PROMISE12挑战赛数据集验证,最终Dice系数和HD分别为88.13%、14.17 mm,参数量和 存储空间降低57%。结果表明,本文方法不仅可以分割出没有有效边缘 的前列腺区域提高其分 割精度而且能有效的降低参数量和存储空间,能够应用于模糊边缘的医学图像中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号