首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 168 毫秒
1.
甲醇制氢技术及在燃料电池中的应用   总被引:1,自引:0,他引:1  
王桂芝 《化学工业》2008,26(1):17-22,33
介绍甲醇制氢工艺、催化剂和甲醇制氢技术在燃料电池中的应用,重点阐述甲醇裂解制氢、甲醇重整制氢和甲醇氧化制氢的相关技术及经济性.  相似文献   

2.
黄炎 《河南化工》2020,37(6):57-59
甲醇裂解制氢工艺装置中,甲醇经裂解反应后的裂解气通过变压吸附提纯氢气,介绍了两段法变压吸附技术在其中的应用情况。以产氢2 000 Nm3/h的甲醇制氢工业装置为例,分别从装置配置、技术指标、占地、公用工程消耗以及投资成本等方面与采用传统一段法变压吸附工艺对比。结果表明:甲醇制氢装置中,采用两段法变压吸附工艺,其甲醇单耗、单位氢气成本、年运行成本均低于传统一段变压吸附工艺。  相似文献   

3.
通过技改,甲醇裂解变压吸附制氢新项目的改进,提高了制氢的稳定性和安全性,满足了生产需要。  相似文献   

4.
通过对集中式供氢和分布式供氢两种供氢模式的技术进展和成本的分析,说明分布式供氢模式是加氢站氢气来源的首选。对天然气制氢、甲醇制氢和电解水制氢的成本和原料供应情况进行了对比,阐述了甲醇制氢的优势。总结了近年甲醇制氢技术的发展趋势,包括传统甲醇制氢技术以及甲醇制氢的一些新技术,通过相关阐述,为加氢站供氢模式的选择和氢能产业的发展提供参考。  相似文献   

5.
氢能作为一种清洁、燃烧热值高的新能源,广泛应用于供能和化工合成,因而研究氢气的制备对能源产业发展和经济建设有着重大意义。本文着重介绍天然气制氢、重油部分氧化制氢、煤气化制氢、甲醇裂解制氢、荒煤气制氢、水电解制氢以及生物质制氢技术,涉及制氢原理、制氢工艺及制氢特点,分析制氢工艺经济性,并对制氢技术的前景进行展望。  相似文献   

6.
通过简要介绍制氢加氢合建站规划设计的现实意义和国内外加氢站发展现状,提出制氢加氢“子母站”的概念。本文简要介绍了制氢加氢“子母站”的建设模式,即制氢加氢“子母站”采取分布式供氢模式,“母站”制氢加氢集成为一体,“子站”作为纯加氢站,“母站”与“子站”之间采用长管拖车运输,“母站”为制氢加氢一体站,“母站”总装置内的供氢单元主要考虑采用天然气制氢、甲醇制氢和电解水制氢3种模式。简要分析了天然气制氢、甲醇制氢、电解水制氢技术的优缺点,并从氢气的生产成本、氢气的储运成本、制氢加氢“子母站”中制氢站的建设成本、运营成本等几方面进行了较为详细的成本分析。通过供氢模式的特点和成本分析,提出以水电解制氢、甲醇制氢、天然气制氢装置作为氢源的制氢加氢“子母站”为适宜我国能源结构的新型氢能利用模式。  相似文献   

7.
概要阐述了甲醇裂解制氢原原理及其在山梨醇生产中的应用,并与水电解制氢进行了技术经济比较。  相似文献   

8.
对煤制氢、天然气制氢、甲醇制氢以及工业副产回收氢气等化石原料制氢技术发展现状进行了详细分析,研究对比了几种化石原料制氢技术的生产成本与经济性,并对化石原料制氢产业发展前景进行了深入思考,总体认为:煤制氢具有资源成本优势,是实现大规模制氢的首选技术;天然气制氢发展潜力大,但目前存在资源约束和成本较高的问题;工业副产回收氢气是未来颇具发展潜力的制氢方式;甲醇制氢规模灵活,但存在设备成本高、稳定性较差等不足。在当前太阳能等新能源制氢技术尚未成熟的现实条件下,化石原料制氢必将担当主要角色,未来氢能产业必将是化石原料制氢与电解水制氢、新能源制氢多种方式共存、多元化发展的供给格局。  相似文献   

9.
涂盛辉  巫辉  梁海营  万金保  杜军 《化工学报》2013,64(9):3228-3234
采用溶胶-凝胶法(sol-gel)、水热法和光沉积法制备了铂(Pt)负载量为0.5%的二氧化钛纳米管催化剂(TNT),并利用甲醇等醇类制氢。结果表明,所制备的催化剂具有良好的管状形貌;甲醇(CH3OH)和水在同等数量级上共同吸附在催化剂表面9 h后制氢效率最高,核磁共振氢谱(1H NMR)分析表明甲醇裂解制氢过程在催化剂表面进行,因氢键束缚产生的过渡产物无法脱附直至形成CO2;醇类碳链长度、支链数目、羟基数目以及苯环基团等都对醇类制氢有着不同的影响,制氢过程中醇分子与催化剂的吸附作用强弱和醇分子被羟基植入的难易程度是制氢效果差异的主要原因。  相似文献   

10.
甲醇裂解制氢工艺及其在林产化工中的应用   总被引:2,自引:0,他引:2  
阐述了甲醇裂解制氢工艺以及在氢化松香和对孟烷生产中的应用,并经生产实践证明,具有明显的经济和社会效益。  相似文献   

11.
陈建文 《广东化工》2006,33(6):79-81
乙烯酮(双乙烯酮)是十分重要的化工中间体,其下游产品较多。江苏某化工厂开发生产乙烯酮(双乙烯酮)下游产品三十多个,年生产规模三万多吨,是国内以乙烯酮(双乙烯酮)为中间体生产精细化学品的综合骨干企业。针对乙烯酮(双乙烯酮)下游产品废水特点,该厂结合企业实际,开展了产品优化,结构调整,清洁生产,资源循环利用,节水降耗等工作,从源头削减了污染物的生产。同时投资二千多万元新建预处理装置三套,6000m3/d废水生化处理装置一套,使全厂乙烯酮(双乙烯酮)下游产品的废水得到了有效的治理。  相似文献   

12.
13.
14.
姬波  刘奇峰 《河南化工》2005,22(3):43-44
利用组件技术开发化工原理实验课件,给出了系统层、组件库层和应用层的架构划分。重点讨论了组件库的设计,给出了流体阻力这一典型实验的实现描述。实践证实,基于组件技术可以提高仿真实验的开发效率。  相似文献   

15.
周云  温集强 《水泥》2007,(10):29-30
我厂3号回转窑(Φ4m×60m)生产线在1996年年底由SP窑(产量912t/d)改为NSP窑(产量1320t/d),预分解系统为四级旋风预热器带离线式分解炉  相似文献   

16.
阐述并比较了几种加压设备在乙炔加压清净过程中的性能和特点。  相似文献   

17.
The miscibility of various amorphous polybutadienes with mixed microstructures of 1,4 addition units (cis, 1,4 and trans 1,4) and 1,2 addition units have been investigated. The studies here involved optical transparency, differential scanning calorimetry, and small angle light scattering. It was found that a 90 percent (cis) 1, 4 addition polybutadiene was immiscible with high (91 percent) 1,2 addition polybutadiene. Reduction of the 1,2 content to 71 percent induced an upper critical solution temperature (UCST) with the cis 1,4 polymer. Polybutadienes with 50 percent and 10 percent 1,2 contents were miscible above the crystalline melting temperature of the cis 1,4 polybutadiene. Immiscibility of the 91 percent 1,2 addition polymer was also found with a 10 percent 1,2 polybutadiene. The latter polymer also exhibits an UCST with the 71 percent 1,2 polymer. The results are used to interpret the characteristics of blends of polybutadienes of varying microstructure.  相似文献   

18.
唐蕾 《粉煤灰》2013,(5):5-6
以F类粉煤灰为例,详细介绍了测定粉煤灰中烧失量的步骤、计算数学模型、影响测量不确定度的因素以及各项测量不确定度分量评定,人员、设备、材料、方法、环境都是影响测量不确定的因素。  相似文献   

19.
水泥水化热是中、低热水泥和核电工程用水泥的一项关键的技术指标。全球范围内测定水泥水化热的方法有溶解法、直接法/半绝热法、等温传导量热法三种。本文总结了中、美、欧相关方法标准,对其测试原理、仪器设备、试验过程等方面进行了比对,并对其在领域的应用做了简单的概括。  相似文献   

20.
Conclusions It is significant that the purification on a single passage of viscose through porous ceramic corresponds to the result of a two-stage filtration of it in industrial filter-presses with standard fillings.Kiev Combine. Kiev Technological Institute of Light Industry. Translated from Khimicheskie Volokna, No. 3, pp. 20–22, May–June, 1969.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号