共查询到19条相似文献,搜索用时 56 毫秒
1.
我国500kV同塔双回线路绝缘方式选择 总被引:2,自引:0,他引:2
对我国500kV同塔双回线路,曾有采用平衡绝缘方式和不平衡绝缘方式2种不同意见。调查我国500kV同塔双回平衡高绝缘方式线路雷击跳闸次数表明,雷击单回跳闸率为0.019次/(100km·a),远低于我国500kV单回线的雷击跳闸率0.136次/(100km·a),雷击双回同时跳闸率为零,平衡高绝缘方式的雷电性能是令人满意的。参照国内外的运行经验,并考虑我国光纤分相电流差动保护的开发和运行,分析了2种绝缘方式的利弊。认为我国500kV同塔双回线路绝缘宜采用平衡高绝缘方式,不宜采用不平衡绝缘方式。采用减小或增大10%的绝缘子片数的不平衡绝缘方式既削弱了一侧的工频绝缘水平,又因不平衡度太小而起不到作用。 相似文献
2.
为提高同塔双回输电线路的运行可靠性,改善绝缘水平是降低线路雷击跳闸率比较经济的可行方式.改善双回线路绝缘水平的方式一般有平衡高绝缘和差绝缘(不平衡绝缘)两种,通过分析两种方式的优缺点,提出在具体工程中的应用条件和建议. 相似文献
3.
为提高同塔双回输电线路的运行可靠性,改善绝缘水平是降低线路雷击跳闸率比较经济的可行方式。改善双回线路绝缘水平的方式一般有平衡高绝缘和差绝缘(不平衡绝缘)两种,通过分析两种方式的优缺点,提出在具体工程中的应用条件和建议。 相似文献
4.
针对采用不平衡绝缘的双回共塔输电线路发生多起遭受雷击同时跳闸事故,对同塔双回架空输电线路,考虑不同相导线上瞬间工频电压影响,计算分析耦合系数差异、横担高度不同、导线平均高度不同对不同回路不同相绝缘子上产生的雷电压差异,从理论上确定同塔双回架空输电线路不平衡绝缘度。考虑投资因素,结合理论计算、杆塔结构和运行经验,建议取110kV、220kV、500kV线路的不平衡绝缘差分别为2、3、5片。 相似文献
5.
应用电磁暂态仿真计算EMTP程序,对在同塔双回线路中采用不平衡绝缘时,可将两相闪络有效锁定在低绝缘侧的最低不平衡度进行了分析,并提供了相应的绝缘配置方案.当线路采用平衡绝缘或绝缘的不平衡度较小时,雷击导致的两相闪络通常发生在两回线路中,即一回各有一相闪络;而随着两回线路绝缘水平差距的拉大,两相闪络将逐渐向低绝缘侧集中.利用该原理,通过保证两回线路之间足够的绝缘水平差距可将两相闪络锁定在绝缘水平较低的一回中,即实现以一回三相跳闸为代价来避免严重的双回同跳事故,从而提高线路的双回耐雷水平.计算结果显示,当220 kV和110 kV同塔双回线路的绝缘不平衡度达30%左右,或分别相差4片和3片绝缘子时,不平衡绝缘可较好地起到锁定两相闪络的效果.并且,该方案的防同跳效果在采用各种导线相序布置方式的双回线路上均稳定可靠,因而可有效地避免同塔双回输电线路发生雷击同跳事故. 相似文献
6.
500kV同塔双回线路不平衡度及换位方式研究 总被引:2,自引:0,他引:2
以我国某典型500kV同塔双回线路为例,计算了同塔双回线路不同相序排列和换位方式的不平衡度,研究了500kV同塔双回线路的相序排列和换位方式。 相似文献
7.
8.
雷击故障是我国目前输电线路的主要故障,从电网安全运行考虑,要求尽量减少雷击事故的发生。文章通过对上海电网泗祥4145/4146同塔双回输电线路防雷改造前后的防雷性能以及利用蒙特卡洛法进行全面分析,上海电网雷击跳闸的主要原因是现有杆塔高度偏高,提出了两种线路防雷改造方案。 相似文献
9.
在线路走廊特别紧张的地区,部分线路可能没有条件采用完全换位,而同塔多回输电线路中采用不换位架设将导致电力系统三相参数不对称。针对这个问题,以某地区一条750 kV同塔双回线路为例,对该线路不平衡度计算进行了理论推导,并应用PSCAD/EMTDC软件从杆塔类型、相序排列方式、回间距离、线路长度几个方面对线路不平衡度进行了仿真分析。仿真结果表明,输电线路较短时采用同塔同窗逆相序方式架设并适当调整回间距离,能将电压不平衡度控制在一定范围内。输电线路过长时则需采取换位措施,避免对系统造成不良影响。 相似文献
10.
11.
12.
Hiromitsu Taniguchi Hitoshi Sugimoto Shigeru Yokoyama 《Electrical Engineering in Japan》1997,119(1):17-23
In order to clarify the cause of lightning outages of a distribution line, simultaneous observation of lightning discharge channels and types of damage on distribution lines were carried out with still cameras from July 1993 through July 1995. High-voltage lines located in the observation area did not suffer from induced voltages due to indirect lightning strikes, even if such lightning strikes were nearby. One instance of a direct lightning strike on a distribution line was observed. The striking point was the span center of the overhead ground wire, and only a transformer fuse was blown on the high-voltage line. Damage to surge arresters was observed in the case of a lightning strike on a building located near a distribution line. The cause is thought to have been lightning current which flowed into the nearby distribution line through the damaged arresters. © 1997 Scripta Technica, Inc. Electr Eng Jpn 119(1): 17–23, 1997 相似文献
13.
14.
与单回500 kV输电线路相比,同塔双回500 kV输电线路杆塔高度增加,引雷面积增大,将直接影响到线路的耐雷水平。文章依据先导发展闪络判据,模拟电弧的非线性特性,建立了绝缘闪络模型。利用电磁暂态仿真软件(ATP-EMTP),搭建了500 kV同塔双回输电线路反击耐雷性能仿真电路,分析了杆塔高度、冲击接地电阻和工频电压等因素对线路反击耐雷性能的影响。结果表明:杆塔高度增加后,线路反击耐雷水平显著降低;杆塔冲击接地电阻的增大,将导致线路跳闸率上升,在电阻较高的情况下尤为明显;同时工频电压对500 kV同塔双回输电线路耐雷性能影响尤为明显,因此,在500 kV同塔双回输电线路的设计中应充分考虑工频电压对线路耐雷性能的影响。 相似文献
15.
There are two major protective methods against lightning outages on overhead distribution lines. One is by use of surge arresters and the other is by an overhead ground wire. Surge arresters have rather constant effect regardless of the type of lightning outage causes. On the other hand, the effect of an overhead ground wire is quite different against the two major causes: direct lightning hit and induced overvoltages. This paper shows how to design lightning protection for overhead power distribution lines taking these characteristics into account. Copyright © 2007 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc. 相似文献
16.
介绍了同杆双回线路继电保护技术的特点,同杆双回线路保护原理、研究和应用进展,以及实际投运同杆双回线路的保护配置情况。对同杆双回线路继电保护技术的研究及工程应用作了分析和展望。 相似文献
17.
Tsunayoshi Ishii Syuichi Oguchi Yoshiki Sakamoto Shigemitsu Okabe 《Electrical Engineering in Japan》2013,183(2):12-21
The number of home electric appliances, such as personal computers and telephones, has been rapidly increasing. Lightning damage to these home electric appliances has a great impact on a highly sophisticated information society. There are cases in which lightning overvoltages in low‐voltage distribution lines cause malfunctions in them, even though they are equipped with surge protective devices to protect against lightning overvoltages. Therefore, for lightning protection of low‐voltage equipment including home electric appliances, it is important to understand the phenomenon of lightning overvoltages in low‐voltage power distribution lines. However, many aspects of this problem are not entirely clear, in particular how they are generated. The Tokyo Electric Power Company carried out lightning observations on low‐voltage distribution lines. The observation results provide a statistical distribution of lightning overvoltages in low‐voltage distribution lines. A mechanism for generating lightning overvoltages in low‐voltage distribution lines is inferred from the observed waveforms and facilities data. © 2013 Wiley Periodicals, Inc. Electr Eng Jpn, 183(2): 12–21, 2013; Published online in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/eej.21299 相似文献
18.