首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA and silica-coated magnetic particles entangle and form visible aggregates under chaotropic conditions with a rotating magnetic field, in a manner that enables quantification of DNA by image analysis. As a means of exploring the mechanism of this DNA quantitation assay, nanoscale SiO2-coated Fe304 (Fe3O4@SiO2) particles are synthesized via a solvothermal method. Characterization of the particles defines them to be -200 nm in diameter with a large surface area (141.89 m2/g), possessing superparamagnetic properties and exhibiting high saturation magnetization (38 emu/g). The synthesized Fe3O4@SiO2 nanoparticles are exploited in the DNA quantification assay and, as predicted, the nanoparticles provide better sensitivity than commercial microscale Dynabeads for quantifying DNA, with a detection limit of 4 kilobase-pair fragments of human DNA. Their utility is proven using nanoparticle DNA quantification to guide efficient polymerase chain reaction (PCR) amplification of short tandem repeat loci for human identification.  相似文献   

2.
We demonstrate an easy and scalable low-temperature process to convert porous ternary complex metal oxide nanoparticles from solution-synthesized core/shell metal oxide nanoparticles by thermal annealing. The final products demonstrate superior electrochemical properties with a large capacity and high stability during fast charging/discharging cycles for potential applications as advanced lithium-ion battery (LIB) electrode materials. In addition, a new breakdown mechanism was observed on these novel electrode materials.
  相似文献   

3.
The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles. The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition. Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%–0.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver.   相似文献   

4.
Manganese oxides are cost-effective and green materials with rich electrochemical properties. Continuous research efforts have been undertaken to obtain MnO x materials with improved activity and stability for catalyzing the oxygen reduction reaction (ORR). Here, we have developed a novel ORR catalyst by nucleation and growth of Mn3O4 nanoparticles on graphene oxide (GO) sheets interconnected by electrically conducting multi-walled carbon nanotubes (MWCNTs). X-ray near edge absorption structure (XANES) spectroscopy revealed the partially reduced nature of GO and strong chemical coupling between the nanoparticles and the GO sheets. Incorporation of MWCNTs was found to improve the activity and stability of the hybrid by imparting higher conductivity to the hybrid material. Furthermore, surface oxidation of the manganese oxide nanoparticles through a calcination step was found to increase the density of ORR active sites. The strongly coupled and electrically interconnected Mn3O4/nanocarbon (Mn3O4/Nano-C) hybrid is one of the most active and stable manganese oxide-based ORR catalysts and shows promise for electrochemical energy conversion applications.   相似文献   

5.
The recent success in the synthesis and total structure determination of atomically precise gold nanoparticles has provided exciting opportunities for fundamental studies as well as the development of new applications. These unique nanoparticles are of molecular purity and possess well defined formulas (i.e., specific numbers of metal atoms and ligands), resembling organic compounds. Crystallization of such molecularly pure nanoparticles into macroscopic single crystals allows for the determination of total structures of nanoparticles (i.e., the arrangement of metal core atoms and surface ligands) by X-ray crystallography. In this perspective article, we summarize recent efforts in doping and alloying gold nanoparticles with other metals, including Pd, Pt, Ag and Cu. With atomically precise gold nanoparticles, a specific number of foreign atoms (e.g., Pd, Pt) can be incorporated into the gold core, whereas a range of Ag and Cu substitutions is observed but, interestingly, the total number of metal atoms in the homogold nanoparticle is preserved. The heteroatom substitution of gold nanoparticles allows one to probe the optical, structural, and electronic properties truly at the single-atom level, and thus provides a wealth of information for understanding the intriguing properties of this new class of nanomaterials.  相似文献   

6.
The photothermal therapy (PTT) technique is regarded as a promising method for cancer treatment. However, one of the obstacles preventing its clinical application is the non-degradability and biotoxicity of the existing heavy-metal and carbon-based therapeutic agents. Therefore, a PTT material with a high photothermal efficiency, low toxicity, and good biocompatibility is urgently wanted. Herein, we report a titanium oxide-based therapeutic agent with a high efficacy and low toxicity for the PTT process. We demonstrated that Magnéli-phase Ti8O15 nanoparticles fabricated by the arc-melting method exhibit >98% absorption of near infrared light and a superior photothermal therapy effect in the in vivo mouse model. The Ti8O15 nanoparticle PTT material also shows a good biocompatibility and biosafety. Our study reveals Magnéli-phase titanium oxide as a new family of PTT agents and introduces new applications of titanium oxides for photothermal conversion.
  相似文献   

7.
Amphipathic polymer pullulan acetate (PA)-coated magnetic nanoparticles were prepared and characterized by various physicochemical means. The cytotoxicity and cellular uptake of the magnetic nanoparticles were examined. The hyperthermic effect of the magnetic nanoparticles on tumor cells was evaluated. Transmission electron microscopy (TEM) showed that the PA coated magnetic nanoparticles (PAMNs) had spherical morphology. Dynamic light scattering (DLS) showed that the size distribution of PAMNs was unimodal,with an average diameter of 25.8 nm ± 6.1 nm. The presence of the adsorbed layer of PA on the magnetite surface was confirmed by Fourier transform infrared (FTIR) spectroscopy. Magnetic measurements revealed that the saturation magnetization of the PAMNs reached 51.9 emu/g and the nanoparticles were superparamagnetic. Thermogravimetric analysis (TGA) showed that the Fe3O4 particles constituted 75 wt% of the PAMNs. The PAMNs had good heating properties in an alternating magnetic field. Cytotoxicity assay showed that PAMNs exhibited no significant cytotoxicity against L929 cells. TEM results showed that a large number of PAMNs were internalized into KB cells. PAMNs have good hyperthermia effect on KB cells in vitro by magnetic field induced hyperthermia. These novel magnetic nanoparticles have great potential as magnetic hyperthermia mediators.   相似文献   

8.
Magnetic nanoparticles have been used as drug delivery vehicles against a number of cancer cells. Most of these theranostic formulations have used solid iron oxide nanoparticles (SIONPs) loaded with chemotherapeutics as nano-carrier formulation for both magnetic resonance imaging (MRI) and cancer therapy. In this study, we applied the dopamine-plus-human serum albumin (HSA) method to modify hollow iron oxide nanoparticles (HIONPs) and encapsuated doxorubicin (DOX) within the hollow porous structure of the nano-carrier. The new delivery system can load more drug than solid iron oxide nanoparticles of the same core size using the same coating strategy. The HIONPs-DOX formulation also has a pH-dependent drug release behaviour. Compared with free DOX, the HIONPs-DOX were more effectively uptaken by the multidrug resistant OVCAR8-ADR cells and consequently more potent in killing drug resistant cancer cells. MRI phantom and cell studies also showed that the HIONPs-DOX can decrease the T 2 MRI signal intensity and can be used as a MRI contrast agent while acting as a drug delivery vehicle. For the first time, the dual application of chemo drug transport and MR imaging using the HIONPs-DOX formulation was achieved against both DOX-sensitive and DOX-resistant cancer cells.   相似文献   

9.
The reliability and sensitivity of a strain gauge made from a nanoparticle monolayer intrinsically depend on electron tunneling between the adjacent nanoparticles, so that creating nanoscale interstitials with uniform distribution and tuning the interparticle separation reversibly during cyclic mechanical stress are two vital issues for performance enhancement. In this work, one assembly technique is initialized to fabricate parallel nanoparticle strips by precisely tailoring the contact angle of a gold colloid on a substrate. The assembly of a nanoparticle monolayer with a close-packed pattern can be simultaneously switched on and off by independently varying the contact angle across a threshold value of 4.2~. This nanoparticle strip shows a reversible and reliable electrical response even if a mechanical strain as small as 0.027% is periodically supplied, implying well-controlled electron tunneling between the adjacent nanoparticles.  相似文献   

10.
Europium-doped gadolinium oxide (Gd2O3:Eu) nanoparticles have been synthesized, and then their surfaces have been conjugated with nucleolin- targeted AS1411 aptamer to form functionalized target-specific Gd2OB:EU nanoparticles (A-GdO:Eu nanoparticles). The A-GdO:Eu nanoparticles present strong fluorescence in the visible range, high magnetic susceptibility, X-ray attenuation and good biocompatibility. The A-GdO:Eu nanoparticles have been applied to test molecular expression of nucleolin highly expressed CL1-5 lung cancer cells under a confocal microscope. Fluorescence imaging clearly reveals that the nanoparticles can be applied as fluorescent tags for cancer-targeting molecular imaging. Furthermore, taking together their excellent T1 contrast and strong computed tomography (CT) signal, the A-GdO:Eu nanoparticles demonstrate a great capability for use as a dual modality contrast agent for CT and magnetic resonance (MR) molecular imaging. Animal experiments also show that the A-GdO:Eu nanoparticles are able to contrast the tissues of BALB/c mice using CT modality. Moreover, the obvious red fluorescence of A-GdO:Eu nanoparticles can be visualized in a tumor by the naked eye. Overall, our results demonstrate that the A-GdO:Eu nanoparticles can not only serve as new medical contrast agents but also as intraoperative fluorescence imaging probes for guided surgery in the near future.  相似文献   

11.
The rational design of earth-abundant catalysts with excellent water splitting activities is important to obtain clean fuels for sustainable energy devices. In this study, mixed transition metal oxide nanoparticles encapsulated in nitrogendoped carbon (denoted as AB2O4@NC) were developed using a one-pot protocol, wherein a metal–organic complex was adopted as the precursor. As a proof of concept, MnCo2O4@NC was used as an electrocatalyst for water oxidation, and demonstrated an outstanding electrocatalytic activity with low overpotential to achieve a current density of 10 mA·cm?1 (η 10 = 287 mV), small Tafel slope (55 mV·dec?1), and high stability (96% retention after 20 h). The excellent electrochemical performance benefited from the synergistic effects of the MnCo2O4 nanoparticles and nitrogen-doped carbon, as well as the assembled mesoporous nanowire structure. Finally, a highly stable all-solid-state supercapacitor based on MnCo2O4@NC was demonstrated (1.5% decay after 10,000 cycles).
  相似文献   

12.
Iron oxides have attracted considerable interest as abundant materials for high-capacity Li-ion battery anodes. However, their fast capacity fading owing to poorly controlled reversibility of the conversion reactions greatly hinders their application. Here, a sandwich-structured nanocomposite of N-doped graphene and nearly monodisperse Fe3O4 nanoparticles were developed as high-performance Li-ion battery anode. N-doped graphene serves as a conducting framework for the self-assembled structure and controls Fe3O4 nucleation through the interaction of N dopants, surfactant molecules, and iron precursors. Fe3O4 nanoparticles were well dispersed with a uniform diameter of ~15 nm. The unique sandwich structure enables good electron conductivity and Li-ion accessibility and accommodates a large volume change. Hence, it delivers good cycling reversibility and rate performance with a capacity of ~1,227 mA·h·g–1 and 96.8% capacity retention over 1,000 cycles at a current density of 3 A·g–1. Our work provides an ideal structure design for conversion anodes or other electrode materials requiring a large volume change.
  相似文献   

13.
Transparent metal oxide nanowires (NWs) have attracted intense research interest in recent years. We report here the synthesis of interesting ladder-like metal oxide NWs, including In2O3, SnO2, ZnO, and Ga2O3, via a facile chemical vapor deposition (CVD) method. Their structural features and growth mechanism are demonstrated in detail by using the ladder-like In2O3 NWs as an example. Single ladder-like NW-based field-effect transistors (FETs) and photodetectors (PDs) of SnO2 were fabricated in order to investigate their electrical transport and light absorption properties. Compared with straight NW-based FETs which operate in an enhancement mode (E-mode), FETs build on ladder-like NWs operate in a depletion mode (D-mode). The ladder-like NWs also give higher carrier concentrations than conventional single nanowires. Finite-difference time-domain (FDTD) simulations have been performed on the ladder-like NWs and the results reveal a great enhancement of light absorption with both transverse-electric (TE) and transverse-magnetic (TM) polarization modes, which is in good agreement with the experimental results.  相似文献   

14.
Synthetic antiferromagnetic (SAF) nanoparticles are layer-structured particles with high single-particle magnetic moments. In order to covalently bind these nanopartides to cells, they were coated with a silica shell followed by conjugation with streptavidin. The silica coating generates both SAF@SiO2 core-shell nano- particles and silica core-free nanopartides. Using a simple magnetic separation, silica nanoparticles were removed and SAF@SiO2 nanoparticles were purified. After streptavidin conjugation, these particles were used to stain lung cancer cells, making them highly magnetically responsive. The stained cells can rotate in response to an external magnetic field and can be captured when a blood sample containing these cells flows through the sifter.  相似文献   

15.
A simple one step solvothermal strategy using non-toxic and cost-effective precursors has been developed to prepare magnetite/reduced graphene oxide (MRGO) nanocomposites for removal of dye pollutants. Taking advantage of the combined benefits of graphene and magnetic nanoparticles, these MRGO nanocomposites exhibit excellent removal efficiency (over 91% for rhodamine B and over 94% for malachite green) and rapid separation from aqueous solution by an external magnetic field. Interestingly, the performance of the MRGO composites is strongly dependent on both the loading of Fe3O4 and the pH value. In addition, the adsorption behavior of this new adsorbent fits well with the Freundlich isotherm and the pseudo-second-order kinetic model. In further applications, real samples—including industrial waste water and lake water—have been treated using the MRGO composites. All the results demonstrate that the MRGO composites are effective adsorbents for removal of dye pollutants and thus could provide a new platform for dye decontamination.   相似文献   

16.
High yields of CoFe204, NiFe204 and CdFe204 hierarchical porous ball-in-ball hollow spheres have been achieved using hydrothermal synthesis followed by calcination. The mechanism of formation is shown to involve an in situ carbonaceous-template process. Hierarchical porous CoFe2O4 hollow spheres with different numbers of shells can be obtained by altering the synthesis conditions. The electrochemical properties of the resulting CoFe2O4 electrodes have been compared, using different binders. The as-obtained CoFe2O4 and NiFe2O4 have relatively high reversible discharge capacity and good rate retention performance which make them promising materials for use as anode materials in lithium ion batteries.  相似文献   

17.
Yolk/shell nanoparticles (NPs), which integrate functional cores (likes Fe3O4) and an inert SiO2 shell, are very important for applications in fields such as biomedicine and catalysis. An acidic medium is an excellent etchant to achieve hollow SiO2 but harmful to most functional cores. Reported here is a method for preparing sub-100 nm yolk/shell Fe3O4@SiO2 NPs by a mild acidic etching strategy. Our results demonstrate that establishment of a dissolution–diffusion equilibrium of silica is essential for achieving yolk/shell Fe3O4@SiO2 NPs. A uniform increase in the silica compactness from the inside to the outside and an appropriate pH value of the etchant are the main factors controlling the thickness and cavity of the SiO2 shell. Under our “standard etching code”, the acid-sensitive Fe3O4 core can be perfectly preserved and the SiO2 shell can be selectively etched away. The mechanism of regulation of SiO2 etching and acidic etching was investigated.
  相似文献   

18.
TiO2 nanofibers decorated with Pt and Pd nanoparticles have been synthesized and studied in various photocatalytic processes. Excellent photocatalytic behavior in the decomposition of organic dyes in water, degradation of organic stains on the surface of flexible freestanding cellulose/catalyst composite films and in generation of hydrogen from ethanol using both suspended and immobilized catalysts are demonstrated. The performance of the nanofiber-based TiO2 materials is competitive with??and in some cases outperforms??their conventional nanoparticle-based counterparts. In all cases, Pd-decorated TiO2 nanoparticles and nanofibers proved to be more efficient than their Pt-based counterparts, which could be explained on the basis of the formation of nano-sized Schottky interfaces at the contacts between TiO2 and metal nanoparticles. The feasibility of forming cellulose/catalyst composites provides a novel way of utilizing photocatalyst materials in large-area coatings and freestanding films.   相似文献   

19.
Lithium iron phosphate (LiFePO4) is a potential high efficiency cathode material for lithium ion batteries, but the low electronic conductivity and single diffusion channel for lithium ions require good particle size and shape control during the synthesis of this material. In this paper, six LiFePO4 nanocrystals with different size and shape have been successfully synthesized in ethylene glycol. The addition sequence Fe-PO4-Li helps to form LiFePO4 nanocrystals with mostly {010} faces exposed, and increasing the amount of LiOH leads to a decrease in particle size. The electrochemical performance of the six distinct LiFePO4 particles show that the most promising LiFePO4 nanocrystals either have predominant {010} face exposure or high specific area, with little iron(II) oxidation.   相似文献   

20.
We have synthesized water-stable polyaniline nanoparticles coated with triarmed polyethylene glycol chains using a solvent-shift method and confirmed their colloidal size and aqueous solubility. Furthermore, we have demonstrated that the polyaniline nanoparticles can be doped with biological dopants to produce distinct color changes allowing the detection of live cancer cells.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号