首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The application of the traditional methods of multivariate statistics, such as the calculation of principle components, to the analysis of NMR spectra taken on sets of biofluid samples is one of the central approaches in the field of metabonomics. While this approach has proven to be a powerful and widely applicable technique, it has an inherent weakness, in that it tends to be dominated by those chemical species present at relatively higher concentrations. Using a set of commercial honey samples, a comparison of this classical metabonomics approach to one based on the use of the selective TOCSY experiment is presented. While the NMR spectrum of honey and its classical metabonomic analysis is completely dominated by a very few chemical species, specifically alpha-glucose and fructose, the statistical signal carried by minor honey components, such as amino acids, may be accessed using a selective TOCSY-based approach. This approach has the intrinsic virtue that it focuses the statistical analysis on a set of predefined chemical species, which might be chosen for their metabolic significance, and could be composed of either major or minor mixture constituents. Furthermore, the selective TOCSY method allows for more certain chemical identification, acquisition times of approximately 1 min, and accurate quantification of the species contributing to the statistical discriminatory signal.  相似文献   

2.
We describe here the implementation of the statistical total correlation spectroscopy (STOCSY) analysis method for aiding the identification of potential biomarker molecules in metabonomic studies based on NMR spectroscopic data. STOCSY takes advantage of the multicollinearity of the intensity variables in a set of spectra (in this case 1H NMR spectra) to generate a pseudo-two-dimensional NMR spectrum that displays the correlation among the intensities of the various peaks across the whole sample. This method is not limited to the usual connectivities that are deducible from more standard two-dimensional NMR spectroscopic methods, such as TOCSY. Moreover, two or more molecules involved in the same pathway can also present high intermolecular correlations because of biological covariance or can even be anticorrelated. This combination of STOCSY with supervised pattern recognition and particularly orthogonal projection on latent structure-discriminant analysis (O-PLS-DA) offers a new powerful framework for analysis of metabonomic data. In a first step O-PLS-DA extracts the part of NMR spectra related to discrimination. This information is then cross-combined with the STOCSY results to help identify the molecules responsible for the metabolic variation. To illustrate the applicability of the method, it has been applied to 1H NMR spectra of urine from a metabonomic study of a model of insulin resistance based on the administration of a carbohydrate diet to three different mice strains (C57BL/6Oxjr, BALB/cOxjr, and 129S6/SvEvOxjr) in which a series of metabolites of biological importance can be conclusively assigned and identified by use of the STOCSY approach.  相似文献   

3.
In general, applications of metabonomics using biofluid NMR spectroscopic analysis for probing abnormal biochemical profiles in disease or due to toxicity have all relied on the use of chemometric techniques for sample classification. However, the well-known variability of some chemical shifts in 1H NMR spectra of biofluids due to environmental differences such as pH variation, when coupled with the large number of variables in such spectra, has led to the situation where it is necessary to reduce the size of the spectra or to attempt to align the shifting peaks, to get more robust and interpretable chemometric models. Here, a new approach that avoids this problem is demonstrated and shows that, moreover, inclusion of variable peak position data can be beneficial and can lead to useful biochemical information. The interpretation of chemometric models using combined back-scaled loading plots and variable weights demonstrates that this peak position variation can be handled successfully and also often provides additional information on the physicochemical variations in metabonomic data sets.  相似文献   

4.
The assignment of significantly changed NMR signals, which were identified with the help of multivariate models, to individual metabolites in biofluids is a manual and tedious task requiring knowledge in chemometrics and NMR spectroscopy. Metabolite projection analysis, introduced in this work, allows automatic linking of multivariate models with metabolites by skipping the level of manual NMR signal identification. The method depends on the projection of sets of metabolite NMR spectra from a database into PCA or PLS models of NMR spectra of biofluid samples. Metabolites that are significantly changed can be identified graphically in metabolite projection plots or numerically as projected virtual concentration. The method is demonstrated together with a newly introduced algorithm for refined nonequidistant binning using a metabonomics study with amiodarone as administered drug. Amiodarone can induce phospholipidosis in the lung and liver, which is accompanied by associated organ toxicity in these organs. It is shown how metabolite projection analysis allows easy and fast tentative assignment of all structures of metabolites whose concentrations in the urine samples significantly changed upon dosage. These metabolites had also been identified previously by manually interpreting the multivariate models and spectra. Among these metabolites, phenylacetylglycine was also identified as being significantly increased. This metabolite has recently been proposed as urinary biomarker for phospholipidosis.  相似文献   

5.
Nuclear magnetic resonance (NMR) is the most widely used nondestructive technique in analytical chemistry. In recent years, it has been applied to metabolic profiling due to its high reproducibility, capacity for relative and absolute quantification, atomic resolution, and ability to detect a broad range of compounds in an untargeted manner. While one-dimensional (1D) (1)H NMR experiments are popular in metabolic profiling due to their simplicity and fast acquisition times, two-dimensional (2D) NMR spectra offer increased spectral resolution as well as atomic correlations, which aid in the assignment of known small molecules and the structural elucidation of novel compounds. Given the small number of statistical analysis methods for 2D NMR spectra, we developed a new approach for the analysis, information recovery, and display of 2D NMR spectral data. We present a native 2D peak alignment algorithm we term HATS, for hierarchical alignment of two-dimensional spectra, enabling pattern recognition (PR) using full-resolution spectra. Principle component analysis (PCA) and partial least squares (PLS) regression of full resolution total correlation spectroscopy (TOCSY) spectra greatly aid the assignment and interpretation of statistical pattern recognition results by producing back-scaled loading plots that look like traditional TOCSY spectra but incorporate qualitative and quantitative biological information of the resonances. The HATS-PR methodology is demonstrated here using multiple 2D TOCSY spectra of the exudates from two nematode species: Pristionchus pacificus and Panagrellus redivivus. We show the utility of this integrated approach with the rapid, semiautomated assignment of small molecules differentiating the two species and the identification of spectral regions suggesting the presence of species-specific compounds. These results demonstrate that the combination of 2D NMR spectra with full-resolution statistical analysis provides a platform for chemical and biological studies in cellular biochemistry, metabolomics, and chemical ecology.  相似文献   

6.
Raman spectroscopy is a standard characterization technique for any carbon system. Here we review the Raman spectra of amorphous, nanostructured, diamond-like carbon and nanodiamond. We show how to use resonant Raman spectroscopy to determine structure and composition of carbon films with and without nitrogen. The measured spectra change with varying excitation energy. By visible and ultraviolet excitation measurements, the G peak dispersion can be derived and correlated with key parameters, such as density, sp(3) content, elastic constants and chemical composition. We then discuss the assignment of the peaks at 1150 and 1480 cm(-1) often observed in nanodiamond. We review the resonant Raman, isotope substitution and annealing experiments, which lead to the assignment of these peaks to trans-polyacetylene.  相似文献   

7.
For the analysis of the spectra of complex biofluids, preprocessing methods play a crucial role in rendering the subsequent data analyses more robust and accurate. Normalization is a preprocessing method, which accounts for different dilutions of samples by scaling the spectra to the same virtual overall concentration. In the field of 1H NMR metabonomics integral normalization, which scales spectra to the same total integral, is the de facto standard. In this work, it is shown that integral normalization is a suboptimal method for normalizing spectra from metabonomic studies. Especially strong metabonomic changes, evident as massive amounts of single metabolites in samples, significantly hamper the integral normalization resulting in incorrectly scaled spectra. The probabilistic quotient normalization is introduced in this work. This method is based on the calculation of a most probable dilution factor by looking at the distribution of the quotients of the amplitudes of a test spectrum by those of a reference spectrum. Simulated spectra, spectra of urine samples from a metabonomic study with cyclosporin-A as the active compound, and spectra of more than 4000 samples of control animals demonstrate that the probabilistic quotient normalization is by far more robust and more accurate than the widespread integral normalization and vector length normalization.  相似文献   

8.
The use of a combination of ultraperformance liquid chromatography at approximately 11,000 psi on sub 2-microm particles combined with reversed-phase gradient chromatography at a temperature of 90 degrees C is described as applied to the analysis of endogenous and drug metabolites in human and animal urine. By using elevated temperatures, back pressures can be reduced while maintaining high flow rates and chromatographic efficiency, with peaks 1-3 s wide at the base. Application to urine samples provided a peak capacity of approximately 700 for a 10-min analysis and greater than approximately 1000 in 1 h. Despite the narrow nature of the peaks, good quality mass spectra were also obtained, allowing the identification of typical drug and endogenous metabolites. These ultra-high-resolution chromatograms should be ideal for the analysis of complex samples in, for example, metabolite identification, impurity identification, and metabonomic/metabolomic studies. Applications in natural product analysis and proteomics can also be envisaged.  相似文献   

9.
Comprehensive metabolite identification and quantification of complex biological mixtures are central aspects of metabolomics. NMR shows excellent promise for these tasks. An automated fingerprinting strategy is presented, termed COLMAR query, which screens NMR chemical shift lists or raw 1D NMR cross sections taken from covariance total correlation spectroscopy (TOCSY) spectra or other multidimensional NMR spectra against an NMR spectral database. Cross peaks are selected using local clustering to avoid ambiguities between chemical shifts and scalar J-coupling effects. With the use of three different algorithms, the corresponding chemical shift list is then screened against chemical shift lists extracted from 1D spectra of a NMR database. The resulting query scores produced by forward assignment, reverse assignment, and bipartite weighted-matching algorithms are combined into a consensus score, which provides a robust means for identifying the correct compound. The approach is demonstrated for a metabolite model mixture that is screened against the metabolomics BioMagResDatabank (BMRB). This NMR-based compound identification approach has been implemented in a public Web server that allows the efficient analysis of a wide range of metabolite mixtures.  相似文献   

10.
The first step when analyzing multicomponent LC/MS data from complex samples such as biofluid metabolic profiles is to separate the data into information and noise via, for example, peak detection. Due to the complex nature of this type of data, with problems such as alternating backgrounds and differing peak shapes, this can be a very complex task. This paper presents and evaluates a two-dimensional peak detection algorithm based on raw vector-represented LC/MS data. The algorithm exploits the fact that in high-resolution centroid data chromatographic peaks emerge flanked with data voids in the corresponding mass axis. According to the proposed method, only 4 per thousand of the total amount of data from a urine sample is defined as chromatographic peaks; however, 94% of the raw data variance is captured within these peaks. Compared to bucketed data, results show that essentially the same features that an experienced analyst would define as peaks can automatically be extracted with a minimum of noise and background. The method is simple and requires a priori knowledge of only the minimum chromatographic peak width-a system-dependent parameter that is easily assessed. Additional meta parameters are estimated from the data themselves. The result is well-defined chromatographic peaks that are consistently arranged in a matrix at their corresponding m/z values. In the context of automated analysis, the method thus provides an alternative to the traditional approach of bucketing the data followed by denoising and/or one-dimensional peak detection. The software implementation of the proposed algorithm is available at http://www.anchem.su.se/peakd as compiled code for Matlab.  相似文献   

11.
Metabolite identification in the complex NMR spectra of biological samples is a challenging task due to significant spectral overlap and limited signal-to-noise. In this study we present a new approach, RANSY (ratio analysis NMR spectroscopy), which identifies all the peaks of a specific metabolite on the basis of the ratios of peak heights or integrals. We show that the spectrum for an individual metabolite can be generated by exploiting the fact that the peak ratios for any metabolite in the NMR spectrum are fixed and proportional to the relative numbers of magnetically distinct protons. When the peak ratios are divided by their coefficients of variation derived from a set of NMR spectra, the generation of an individual metabolite spectrum is enabled. We first tested the performance of this approach using one-dimensional (1D) and two-dimensional (2D) NMR data of mixtures of synthetic analogues of common body fluid metabolites. Subsequently, the method was applied to (1)H NMR spectra of blood serum samples to demonstrate the selective identification of a number of metabolites. The RANSY approach, which does not need any additional NMR experiments for spectral simplification, is easy to perform and has the potential to aid in the identification of unknown metabolites using 1D or 2D NMR spectra in virtually any complex biological mixture.  相似文献   

12.
Metabolite profiling relies on optimal precision of the acquired data, which requires, among others, a high signal-to-noise ratio (S/N). In addition, increased S/N will increase the likelihood of identification of new biomarkers. Here we introduce, for the first time in metabolite profiling studies by 1H NMR, an approach to enhance the precision of multivariate regression models by use of the FLIPSY (flip angle adjustable one-dimensional NOESY) pulse sequence, augmented by a homospoil pulse after the presaturation period to provide superior baseline quality. Unlike NOESYPRESAT, the standard one-dimensional (1D) sequence generally used in metabonomic studies, FLIPSY incorporates a variable flip angle, allowing use of the Ernst angle for excitation and thus optimization of S/N ratios according to spin lattice relaxation times (T1) of individual resonances. T1 values of metabolites present in human urine were determined by inversion-recovery experiments and subsequently used in calculations of optimal experimental conditions. Comparison of human urine analysis by the FLIPSY and NOESYPRESAT demonstrated an increase of S/N ratio in the former case that amounts to approximately 7% when measured for the hippurate doublet at delta 7.84. An orthogonal projection to latent structures discriminant analysis (O-PLS-DA) model exhibited superior discrimination between controls and simulated phenylketonuria urines when using data generated by the FLIPSY as compared to NOESYPRESAT.  相似文献   

13.
Metabolic mixtures are often analyzed via NMR spectroscopy as it provides a metabolic profile without sample alteration in a noninvasive manner. These mixtures however tend to be very complex and demonstrate considerable spectral overlap resulting in assignments that are sometimes ambiguous given the range of current NMR methods available. De novo molecular identification in these mixtures is generally accomplished using chemical shift information and J-coupling based experiments to determine spin connectivity information, but these techniques fall short when a molecule of interest contains nonrelaying centers. A method is presented here that enhances intramolecular spatial interactions via supercooled water and uses the resulting spatial correlations to edit mixtures. This is accomplished by utilizing nuclear Overhauser effect spectroscopy (NOESY) at subzero temperatures in capillaries to enhance NOE and provide more complete spin systems. This technique is applied to a standard mixture of three known molecules in D(2)O with overlapping resonances and is further demonstrated to assign molecules in a worm tissue extract. The current method proves to be a powerful complement to existing methods such as total correlation spectroscopy (TOCSY) to expand the range of molecules that can be assigned in situ without physical separation of mixtures.  相似文献   

14.
We describe a new time alignment method that takes advantage of both dimensions of LC-MS data to resolve ambiguities in peak matching while remaining computationally efficient. This approach, Warp2D, combines peak extraction with a two-dimensional correlation function to provide a reliable alignment scoring function that is insensitive to spurious peaks and background noise. One-dimensional alignment methods are often based on the total-ion-current elution profile of the spectrum and are unable to distinguish peaks of different masses. Our approach uses one-dimensional alignment in time, but with a scoring function derived from the overlap of peaks in two dimensions, thereby combining the specificity of two-dimensional methods with the computational performance of one-dimensional methods. The peaks are approximated as two-dimensional Gaussians of varying width. This approximation allows peak overlap (the measure of alignment quality) to be calculated analytically, without computationally intensive numerical integration in two dimensions. To demonstrate the general applicability of Warp2D, we chose a variety of complex samples that have substantial biological and analytical variability, including human serum and urine. We show that Warp2D works well with these diverse sample sets and with minimal tuning of parameters, based on the reduced standard deviation of peak elution times after warping. The combination of high computational speed, robustness with complex samples, and lack of need for detailed tuning makes this alignment method well suited to high-throughput LC-MS studies.  相似文献   

15.
In electrospray ionization mass spectra of heterogeneous protein complexes and other bioparticles, accurate mass determination is often hampered by the inaccuracy in determination of the charge states for individual signals. Here, we describe an algorithm that automatically minimizes the standard deviation in a series of related ion peaks with varying numbers of charges. The algorithm assumes that the mass is invariant and allows the determination of the correct charge state in a peak series. The analysis results in a periodic pattern, which can be interpreted as a harmonic oscillator, when the minimum standard deviation of a charge state series is found. We observed that a mass resolution of much less than 1000 in the acquired mass spectra is sufficient to achieve a correct charge state assignment. Moreover, the boundaries of mixed species can be identified by examining the loss of periodicity in the pattern of the analysis. We tested our algorithm successfully on novel spectra and on spectra reported in the literature with sample masses up to several million Dalton, e.g., viral particles, polyethylene glycol polymers, and polystyrene nanoparticles.  相似文献   

16.
In biofluid NMR spectroscopy, the frequency of each resonance is typically calibrated by addition of a reference compound such as 3-(trimethylsilyl)-propionic acid- d 4 (TSP) to the sample. However biofluids such as serum cannot be referenced to TSP, due to shifts resonance caused by binding to macromolecules in solution. In order to overcome this limitation we have developed algorithms, based on analysis of derivative spectra, to locate and calibrate (1)H NMR spectra to the alpha-glucose anomeric doublet. We successfully used these algorithms to calibrate 77 serum (1)H NMR spectra and demonstrate the greater reproducibility of the calculated chemical-shift corrections ( r = 0.97) than those generated by manual alignment ( r = 0.8-0.88). Hence we show that these algorithms provide robust and reproducible methods of calibrating (1)H NMR of serum, plasma, or any biofluid in which glucose is abundant. Precise automated calibration of complex biofluid NMR spectra is an important tool in large-scale metabonomic or metabolomic studies, where hundreds or even thousands of spectra may be analyzed in high-resolution by pattern recognition analysis.  相似文献   

17.
Elucidation of the composition of chemical-biological samples is a main focus of systems biology and metabolomics. Due to the inherent complexity of these mixtures, reliable, efficient, and potentially automatable methods are needed to identify the underlying metabolites and natural products. Because of its rich chemical information content, nuclear magnetic resonance (NMR) spectroscopy has a unique potential for this task. Here we present a generalization and application of a recently introduced NMR data collection, processing, and analysis strategy that circumvents the need for extensive purification and hyphenation prior to analysis. It uses covariance TOCSY NMR spectra measured on a 1-mm high-temperature cryogenic probe that are analyzed by a spectral trace clustering algorithm yielding 1D NMR spectra of the individual components for their unambiguous identification. The method is demonstrated on a metabolic model mixture and is then applied to the unpurified venom mixture of an individual walking stick insect that contains several slowly interconverting and closely related metabolites.  相似文献   

18.
采用电化学方法在多孔硅中掺杂了稀土铈(Ce)元素.利用原子力显微镜表征了多孔硅和Ce掺杂多孔硅的表面形貌,采用荧光分光计对样品的光致发光(PL)特性进行了研究.多孔硅样品在480nm波长激发下PL谱上观察到两个发光峰,分别位于572和650nm;通过光致发光激发谱测量,得到位于572、650nm的发光峰对应的最佳激发波长分别为380和477nm.Ce掺杂多孔硅样品在480nm波长激发下,PL谱上只显示出多孔硅原有的发光增强;而在380nm波长激发下的PL谱上不仅显示多孔硅原有的发光增强,而且还出现了新的发光峰位于517nm.认为这分别是Ce3 与nc-Si发生了能量传递和Ce掺杂引入了新的发光中心所造成的.  相似文献   

19.
In typical Fourier transform ion cyclotron resonance (FT-ICR) mass spectra, temporally dispersed excitation and the delay between excitation and detection result in continuous variation of signal phase with frequency in the detected time-domain ion signal. The complex frequency-domain spectrum of such a signal is a linear combination of absorption- and dispersion-mode spectral components with corresponding asymmetric peaks. For this reason, magnitude-mode spectral display is usually employed to yield a phase-independent uniform and symmetrical peak shape at the expense of spectral resolution. In this work, we implement simultaneous excitation and detection to enable Fourier deconvolution to recover absorption-mode spectra for both low- and high-field FT-ICR instruments. These spectra yield resolving power improvement factors approaching the maximum theoretical limit of 2.0, as well as reduction in frequency assignment errors relative to conventional magnitude-mode spectra. The Fourier deconvolution procedure has the additional benefit of correcting for spectral variation resulting from nonuniform power distribution over the excitation bandwidth and the potential benefit of providing useful diagnostic information for interpretation of experimental performance.  相似文献   

20.
利用氧化还原反应燃烧过程合成SrAl2O4:Eu2+,Dy3+长余辉发光材料,采用荧光光谱、X射线衍射、扫描电镜、余辉测试等多种测试手段研究产物的性质,并从多方面与高温固相法合进行对比。结果表明:燃烧法合成的产物为单斜晶系的SrAl2O4,结晶干净完整,晶粒尺寸在0.3~1μm之间;光谱分析显示燃烧法合成材料发射波长为514 nm。相比高温固相法,燃烧法在工艺上具有低温、快速、节能的优点,所得产物易于粉碎,晶粒大大减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号