首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 15 毫秒
1.
This study aimed to assess structural requirements in the enzyme/substrate interactions that are responsible for tuning the enzymatic reactivity. To better assess the role of the aspartic residue in the substrate‐binding pocket of basidiomycete‐type laccases, we compared the catalytic efficiency of wild‐type enzymes to that of a mutant in which carboxylic acid residue Asp206 was changed to alanine. Oxidation efficiency towards phenolic substrates by laccases of Trametes villosa, Trametes versicolor and a T. versicolor D206A mutant was studied at two pH values. By the Hammett approach and Marcus analysis, we obtained unambiguous evidence that the oxidation takes place by a concerted electron/proton transfer (EPT) mechanism, and that at pH 5 (optimum pH for enzyme activity) the phenolic proton is transferred to Asp206 during the concerted electron/proton transfer process.  相似文献   

2.
The copper-containing nitrite reductase (CuNiR) catalyzes the biological conversion of nitrite to nitric oxide; key long-range electron/proton transfers are involved in the catalysis. However, the details of the electron-/proton-transfer mechanism are still unknown. In particular, the driving force of the electron transfer from the type-1 copper (T1Cu) site to the type-2 copper (T2Cu) site is ambiguous. Here, we explored the two possible proton-transfer channels, the high-pH proton channel and the primary proton channel, by using two-layered ONIOM calculations. Our calculation results reveal that the driving force for electron transfer from T1Cu to T2Cu comes from a remote water-mediated triple-proton-coupled electron-transfer mechanism. In the high-pH proton channel, the water-mediated triple-proton transfer occurs from Glu113 to an intermediate water molecule, whereas in the primary channel, the transfer is from Lys128 to His260. Subsequently, the two channels employ another two or three distinct proton-transfer steps to deliver the proton to the nitrite substrate at the T2Cu site. These findings explain the detailed proton-/electron-transfer mechanisms of copper-containing nitrite reductase and could extend our understanding of the diverse proton-coupled electron-transfer mechanisms in complicated proteins.  相似文献   

3.
A film of ~40 layers of partially oriented photosystem I (PSI) complexes isolated from the red alga Cyanidioschyzon merolae formed on the conducting glass through electrodeposition was investigated by time-resolved absorption spectroscopy and chronoamperometry. The experiments were performed at a range of electric potentials applied to the film and at different compositions of electrolyte solution being in contact with the film. The amount of immobilized proteins supporting light-induced charge separation (active PSI) ranged from ~10%, in the absence of any reducing agents (redox compounds or low potential), to ~20% when ascorbate and 2,6-dichlorophenolindophenol were added, and to ~35% when the high negative potential was additionally applied. The origin of the large fraction of permanently inactive PSI (65–90%) was unclear. Both reducing agents increased the subpopulation of active PSI complexes, with the neutral P700 primary electron donor, by reducing significant fractions of the photo-oxidized P700 species. The efficiencies of light-induced charge separation in the PSI film (10–35%) did not translate into an equally effective generation of photocurrent, whose internal quantum efficiency reached the maximal value of 0.47% at the lowest potentials. This mismatch indicates that the vast majority of the charge-separated states in multilayered PSI complexes underwent charge recombination.  相似文献   

4.
Heme is an essential and functionally versatile cofactor. Our understanding of how the environment of a heme in a protein tunes its function has benefited from spectroscopic and functional investigations of heme proteins and their variants with altered heme environments. Two properties of current interest are the conformation of the heme and hydrogen bonding to heme propionates. By combining nuclear magnetic resonance experiments and density functional theory calculations, both of these characteristics have been shown to influence the distribution of the singly occupied molecular orbital on the heme of ferricytochrome c, which affects coupling to redox partners and electron-transfer rates. In addition, heme conformation has been shown to tune reduction potential. These results reveal that subtle variations in heme conformation and in interactions with its propionates can have significant impacts on electron-transfer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号