首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, phase pure Cr2AlC and impure Cr2AlC with Cr7C3 have been fabricated to investigate the mechanical, thermal, and electrical properties. The thermal expansion coefficient is determined as 1.25 × 10−5 K−1 in the temperature range of 25-1200 °C. The thermal conductivity of the Cr2AlC is 15.73 W/m K when it is measured at 200 °C. With increasing temperature from 25 °C to 900 °C, the electrical conductivity of Cr2AlC decreases from 1.8 × 106 Ω−1 m−1 to 5.6 × 105 Ω−1 m−1. For the impure phase of Cr7C3, it has a strengthening and embrittlement effect on the bulk Cr2AlC. And the Cr2AlC with Cr7C3 would result in a lower high-temperature thermal expansion coefficient, thermal conductivity, specific heat capacity and electrical conductivity.  相似文献   

2.
Preparation of the Ti3Si1−xAlxC2 solid solution with x = 0.2-0.8 was investigated by self-propagating high-temperature synthesis (SHS) using TiC-, SiC-, and Al4C3-containing powder compacts. Due to the variation of reaction exothermicity with sample stoichiometry, the combustion temperature and reaction front velocity decreased with increasing Al content of Ti3Si1−xAlxC2 for the TiC- and Al4C3-added samples, but increased for the samples with SiC. In contrast to the formation of Ti3(Si,Al)C2 as the dominant phase for the TiC- and SiC-added samples, TiC was identified as the major constituent in the final products of samples adopting Al4C3. In addition, the evolution of Ti3(Si,Al)C2 was improved by increasing the Al content of the TiC- and SiC-added powder compacts, but deteriorated considerably upon the increase of Al4C3 in the Al4C3-containing sample.  相似文献   

3.
Preparation of the ternary carbide Ti2AlC was conducted by combustion synthesis in the mode of self-propagating high-temperature synthesis (SHS) from the elemental powder compacts of Ti:Al:C = 2:1:1, TiC-containing samples with TiC of 6.67–14.3 mol%, and Al4C3-containing samples with Al4C3 of 1.96–10 mol%. Effects of TiC and Al4C3 addition were studied on combustion characteristics and the degree of phase conversion. Due to the growth of laminated Ti2AlC grains, the reactant compact was subjected to an axial elongation during the SHS process. Because the addition of TiC and Al4C3 led to a decrease in the reaction temperature, the flame-front propagation velocity was correspondingly reduced for the TiC- and Al4C3-containing samples when compared with the elemental reactants. Based upon the XRD analysis, formation of Ti2AlC along with a secondary phase TiC was identified in the synthesized products. The grains of Ti2AlC are typically plate-like with a size of 10–20 μm and several laminated Ti2AlC grains form a layered structure. The content of Ti2AlC yielded from the elemental powder compacts is about 85 wt%. The addition of TiC was found to facilitate the formation mechanism and therefore to enhance the extent of Ti2AlC conversion approaching 90 wt%. As a result of the reduced exothermicity of the reaction, however, the content of Ti2AlC decreased slightly in the products synthesized from the Al4C3-added samples.  相似文献   

4.
The solution-derived precursor method was used to synthesize chromium carbide (Cr3C2) nanopowders, ammonium dichromate ((NH4)2Cr2O7) and nanometer carbon black were used as raw materials. The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) techniques. The results show that the single phase Cr3C2 can be synthesized under the conditions of 21 wt.% C, 1100 °C and 30 min, and the average crystallite size is 27.2 nm. The powders show good dispersion and are mainly composed of spherical or near- spherical particles with a mean diameter of ~ 30 nm. The surface of the specimen mainly consists of Cr, C and O three species elements. The XPS spectrum of Cr2p consists of two peaks with the binding energies of 577.5 eV and 575.3 eV, which are assigned to the Cr2p3/2 species of Cr2O3 and Cr3C2 − x (0 ≤ x ≤ 0.5), respectively. The XPS spectrum of O1s energy region for chromium carbide contains three peaks (Oa, Oh and Od), which are considered to be due to O, OH and Cr2O3, respectively.  相似文献   

5.
High purity, dense Cr2AlC compounds were synthesized via a powder metallurgical route, and their oxidation behavior was investigated at 1300 °C in air for up to 336 h. A thin external oxide layer formed, which consisted primarily of not Cr2O3 but Al2O3. Since Al was consumed to produce the Al2O3, Al-depletion and Cr-enrichment occurred underneath the Al2O3 layer. This led to the formation of a Cr7C3 layer containing voids. These grew during oxidation, eventually destroying the Cr7C3 layer formed on the unoxidized Cr2AlC matrix.  相似文献   

6.
Thermal expansion analysis is applied to the study of phase segregation of Zr2Al4C5 at elevated temperatures (20-2000 °C) under flowing argon. Such information would be useful for the detection of phase decomposition temperature and thermal stability of materials. The detected phase-decomposition temperature of Zr2Al4C5 is approximately 1900 °C. The presented thermal expansion analysis results are in good agreement with the X-ray diffraction (XRD) and SEM results. The results indicate that Zr2Al4C5 is susceptible to decomposition through sublimation of high vapor pressure of Al and weaker covalent bonds between ZrC slabs and Al4C3 layers. Thus, minimal amounts of Al, Zr2Al3C5, Al4C3 and ZrC form on the surface layer. Zr2Al3C5 further decomposes to ZrC1 − x and Al4C3 at 2000 °C. However, the amount of decomposing phase slowly increases, and the structural shape of bulk Zr2Al4C5 ceramic is always kept stable during heat treatment.  相似文献   

7.
Solid solution ceramics (Al2O3)x(Cr2O3)1−x with different x in the range of 0 < x < 1 were synthesized via traditional ceramic production method. X-ray diffraction results and Rietveld refinements indicated that all samples possessed rhomb-centered structure and continuous solid solutions were synthesized. The samples were composed of irregular grains with several micrometers in diameter. Temperature dependence of magnetization measurements showed monotonous decreasing Néel temperature with increasing x and percolation effect happened with threshold of x = 0.65. As x became higher, weak ferromagnetism was observed in the samples. Field dependence of magnetization measurements further confirmed the weak ferromagnetism in the samples with x = 0.7, 0.8 and 0.9.  相似文献   

8.
Vacuum plasma spraying (VPS) was used to spray a Cr3C2-NiCr coating of ∼ 150, 300 and 450 μm in thickness onto a plain carbon steel substrate, employing a commercially available Cr20Ni9.5C powder. The splat microstructures observed in the coating were found to consist of a NiCr matrix with a predominant Cr3C2 phase, besides Cr7C3 and Cr2O3. The adhesion of the coating to the substrate was evaluated by means of interfacial indentation techniques. It has been found that the interfacial toughness value changes from 7.6 to 10.1 MPa m1/2 when the thickness increases from 150 to 450 μm. Also, it has been found that the parameter Kcao, determined by linear regression from the Kca versus 1 / e2 curve by means of the interfacial indentation model advanced by Chicot et al., has a value of ∼ 9.8 MPa m1/2.  相似文献   

9.
The isothermal oxidation behavior of Cr2AlC coatings on alumina substrates was investigated in the temperature range of 1230 to 1410 °C. The structure, surface morphology, microstructure evolution and chemistry of the reaction products have been investigated. In the investigated temperature range, the Cr2AlC films form a dense continuous oxide scale consisting of α-Al2O3 on Cr carbides. The oxidation rates determined by thermo gravimetric analysis (TGA) were parabolic, indicating that diffusion through the scale is the rate limiting mechanism. The activation energy for oxidation was determined to be 348 kJ mol− 1 and the parabolic rate constant at 1230 °C was 7.1 × 10− 10 kg2 m− 4 s− 1. Hence, the oxidation behavior is comparable to NiAl in the temperature range and time intervals investigated. With increasing oxidation time voids form at the interface between oxide and Cr carbides and the amount of Cr7C3 increases at the expense of Cr3C2. Based on our thermodynamic calculations the oxygen partial pressure below the oxide scale increases as Al is depleted and Cr carbides oxidize, resulting in CO gas- and Cr2O3-formation. The formation of gas may together with the depletion of Al and Cr lead to the significant void formation observed in the Cr carbide interlayer. Observation of both Cr carbide precipitates and the formation of (Al,Cr)2O3 solid solution support this notion. For comparison bulk Cr2AlC was oxidized. It is argued that the absence of pores in oxidized bulk Cr2AlC is due to the considerably larger amount of Al available.  相似文献   

10.
Amorphous Cr2AlC thin films were produced by room temperature magnetron sputtering on NaCl substrates with subsequent dissolution of the NaCl. The crystallization kinetics of Cr2AlC was investigated by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Two exothermal reactions are observed during DSC up to 1200 °C. Comparing lattice parameters obtained from XRD and ab initio calculations it is suggested that the first reaction is associated with the formation of hexagonal (Cr,Al)2Cx, while after the second reaction Cr2AlC is formed. The activation energy for the phase transformations are 426 and 762 kJ/mol, respectively.  相似文献   

11.
In the present work the corrosion resistance of micro-cracked hard chromium and Cr3C2-NiCr (HVOF) coatings applied on a steel substrate have been compared using open-circuit potential (EOC) measurements, electrochemical impedance spectroscopy (EIS) and polarization curves. The coatings surfaces and cross-section were characterized before and after corrosion tests using optical microscopy (OM) and scanning electron microscopy (SEM). After 18 h of immersion, the open-circuit potential values were around −0.50 and −0.25 V/(Ag∣AgCl∣KClsat) for hard chromium and Cr3C2-NiCr, respectively. The surface analysis done after 12 h of immersion showed iron on the hard chromium surface inside/near surface cracks, while iron was not detected on the Cr3C2-NiCr surface even after 18 h. For longer immersion time hard chromium was more degraded than thermal sprayed coating. For hard chromium coating a total resistance values between 50 and 80 kΩ cm2 were measured and two well-defined time constants were observed, without significant change with the immersion time. For Cr3C2-NiCr coating the total impedance diminished from around 750 to 25 kΩ cm2 as the immersion time increased from 17 up to 132 h and two overlapped time constants were also observed. Polarization curves recorded after 18 h of immersion showed a lower current and higher corrosion potential for Cr3C2-NiCr coating than other samples studied.  相似文献   

12.
13.
FeMnCr/Cr3C2 and FeMnCrAl/Cr3C2 coatings, using Ni9Al arc-sprayed coating as an interlayer on low-carbon steel substrates, were deposited by high velocity arc spraying (HVAS) on the cored wires. The high temperature oxidation behavior of the arc-sprayed FeMnCrAl/Cr3C2-Ni9Al and FeMnCr/Cr3C2 coatings on the low-carbon steel substrates was studied during isothermal exposures to air at 800 °C. The surface and interface morphologies of the coatings after isothermal oxidation after 100 h were observed and characterized by optical microscopy, field emission scanning electron microscope, energy dispersion spectrum, and X-ray diffraction. The results showed that the oxidation weight gains of the coatings were significantly lower than that of the low-carbon steel substrate. Moreover, the FeMnCrAl/Cr3C2-Ni9Al coating registered the lowest oxidation rate. This favorable oxidation resistance is due to the Al and Cr contents of the aforementioned coating that inhibits the generation of Fe and Mn oxides. This is attributed to the interdiffusion between the substrates and the Ni9Al arc-sprayed coating, which can convert the mechanical bonding between substrates and coatings into a metallurgical one, thereby inhibiting the oxidation of interface between the low-carbon steel and the coating.  相似文献   

14.
Cr2AlC coating was deposited at 370 and 500 °C by D.C. magnetron sputtering from an as-synthesized bulk Cr2AlC target. The phase composition and preferential orientation of the coating were investigated using XRD, and the microstructure of the coating was characterized by TEM. Results indicated that Cr2AlC coating with a strong (110) preferential orientation could be obtained. The coating microstructure was clearly affected by the deposition temperature. At 370 °C, the deposited coating possessed a triple-layered structure with an α-(Cr, Al)2O3 inner layer, an amorphous intermediate layer and a crystalline Cr2AlC outer layer. However, the coating deposited at 500 °C had a single-layered structure consisting of crystalline Cr2AlC layer. The growth mechanism of the Cr2AlC coating at different deposition temperatures is discussed.  相似文献   

15.
Fully dense, monolithic ternary Cr2AlC compounds were synthesized via a powder metallurgical route, and their cyclic oxidation behavior was investigated between 1000 and 1300 °C in air for up to 100 h. At 1000 and 1100 °C, Cr2AlC displayed excellent cyclic oxidation resistance by forming a less than 5 μm-thick Al2O3 oxide layer and a narrow Cr7C3 underlayer. At 1200 and 1300 °C, an outer (Al2O3, Cr2O3)-mixed oxide layer, an intermediate Cr2O3 oxide layer, an inner Al2O3 oxide layer, and a Cr7C3 underlayer formed on the surface. From 1200 °C, scale cracking and spalling began to occur locally to a small extent. At 1300 °C, the cyclic oxidation resistance deteriorated owing to the formation of voids and the spallation of the scales.  相似文献   

16.
The influence of the addition of 0.3, 0.5 and 0.7 wt.% VC on the density, microstructure and mechanical properties of WC-Cr3C2-11 wt.% Co with 0, 0.2, 0.4 and 0.6 wt.% Cr3C2 hard metals prepared by spark plasma sintering (SPS) at a temperature of 1200 °C (5 min, 40 MPa) was investigated. Microstructure analysis revealed that the WC grain size in the sintered hard metals was strongly influenced by the VC and Cr3C2 content. With the addition of inhibitors and the increased amount of Cr3C2, the density is reduced, and on the contrary, the addition of VC as an inhibitor contributes to promoting the densification. The combined addition of Cr3C2 and VC could strongly reduce the WC grain growth to about 350 nm. Observation suggests that the fracture of WC-Co cemented carbide is brittle and intergranular. The amount of added VC/Cr3C2 should be controlled in a certain range. Samples with an appropriate proportion of VC/Cr3C2 added exhibit higher hardness which can be up to 1938 HV30. Toughness, too, can reach 16.34 MPa m1/2.  相似文献   

17.
The spectroscopic properties of a series of red phosphors with general composition of CaAl12O19:yMn4+ and (Ca1−xAl12O19, xMgO):yMn4+ (x = 0-1, y = 0.001-1.5%) synthesized by a modified solid state method in air have been investigated in detail. Addition of MgO is necessary for Mn4+ charge compensation and leads to the formation of separate crystal phases of Al2O3 and MgAl2O4, which was confirmed by the XRD studies. Enhancement of Mn4+ luminescence with increasing content of MgO was observed and a mechanism for explanation of this phenomenon is suggested. For an analysis of the crystal phases and luminescent efficiency of the phosphors in the prepared series, crystal field calculations of the Mn4+ energy levels have been performed. This theoretical approach allowed for assigning the observed excitation and emission spectra. Red shift of the Mn4+ luminescence with increasing concentration of Mg ions is explained from the point of view of enhanced nephelauxetic effect after doping.  相似文献   

18.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

19.
The microwave dielectric properties and the microstructures of (Mg1−xZnx)Al2O4 (x = 0-0.1) ceramic system prepared by the conventional solid-state route were investigated. The forming of spinel-structured (Mg1−xZnx)Al2O4 (x = 0-0.1) solid solutions was confirmed by the XRD patterns and the measured lattice parameters, which linearly varied from a = b = c = 8.0815 Å for MgAl2O4 to a = b = c= 8.0828 Å for (Mg0.9Zn0.1)Al2O4. By increasing x, the Q × f of (Mg1−xZnx)Al2O4 can be tremendously boosted from 82,000 GHz at x = 0 to a maximum of 156,000 GHz at x = 0.05. The Zn substitution was effective in reducing the dielectric loss without detrimental effects on the ?r and τf values of the ceramics.  相似文献   

20.
The temperature dependence of competition between interlayer and interfacial couplings is observed at different temperatures in Co (3 nm)/Cr2O3 (t)/Fe (10 nm) trilayers with t = 3 nm, 6 nm, 15 nm and 25 nm, respectively. The interlayer coupling enhances and the interfacial coupling weakens with increasing temperature. The balanceable temperature between interfacial and interlayer couplings shifts to low temperatures with increasing spacer thickness. Furthermore, the competition between interfacial and interlayer couplings greatly affects the magnetotransport properties of the trilayers. The negative magnetoresistance and the minimum resistance corresponding to balanceable temperature are found in trilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号