首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
根据FCC再生烟气特点,应用化学吸收法对烟气中CO2进行捕集。在2m3/h烟气中CO2捕集试验装置上对烟气中CO2捕集技术进行试验研究,结果表明,FCC再生烟气中CO2捕集的适宜工艺条件为:吸收剂质量分数15%~30%,吸收温度60~70℃,解吸温度90~120℃,气液体积比100~250,吸收液为全回流状态。在上述条件下,采用开发的新型吸收剂CHA,烟气中CO2的捕集率达95%,解吸率达80%。与单乙醇胺吸收剂(MEA)相比,CHA的吸收速率相当,解吸能耗低,对设备的腐蚀性小,腐蚀速率仅为0.013 6mm/a,同样条件下MEA的腐蚀速率为0.032 5mm/a。烟气中的SO2对CO2的捕集效果影响较大,在CO2捕集前应先脱除。  相似文献   

2.
根据FCC再生烟气特点,应用化学吸收法对烟气中CO2进行捕集。在 2 m3/h烟气中CO2捕集试验装置上对烟气中CO2捕集技术进行试验研究,结果表明:FCC再生烟气中CO2捕集的适宜工艺条件为:吸收剂质量分数15%~30%,吸收温度60~70 ℃,解吸温度90~120 ℃,气液体积比70~250,吸收液为全回流状态。在上述条件下,采用开发的新型吸收剂CHA,烟气中CO2的捕集率达95%,解吸率达80%。与单乙醇胺吸收剂相比,CHA的吸收速率相当,解吸能耗低,对设备的腐蚀性小,腐蚀速率仅为0.013 6 mm/a,同样条件下MEA的腐蚀速率为0.032 5 mm/a。烟气中的SO2对CO2的捕集效果影响较大,在CO2捕集前应先脱除。  相似文献   

3.
为了开发性能优良的MEA/烯胺复配吸收剂,本研究采用自主设计的CO_2捕集吸收/解吸装置,通过测试烯胺及MEA/烯胺复配吸收剂的吸收速率、吸收量、解吸速率、解吸率等指标确定最佳单组分烯胺溶剂及其与MEA的最佳复配溶剂。研究结果表明,单溶剂中五乙烯六胺(PEHA)的吸收和解吸效果最好,解吸温度最低,是最佳的单组分烯胺吸收剂;不同物质的量浓度比(4∶6~9∶1)的MEA-PEHA复配溶液中,物质的量浓度配比为5∶5的MEA-PEHA复配溶液饱和吸收量最大(1.72mol),平均吸收速率最高(81.74×10~(-6) mol/s),解吸温度最低(68℃),平均解吸速率最大(137.09×10~(-6) mol/s)以及解吸率较高(95.23%),是CO_2捕集的最佳MEA-PEHA混胺体系。  相似文献   

4.
为了开发性能优良的MEA/烯胺复配吸收剂,本研究采用自主设计的CO_2捕集吸收/解吸装置,通过测试烯胺及MEA/烯胺复配吸收剂的吸收速率、吸收量、解吸速率、解吸率等指标确定最佳单组分烯胺溶剂及其与MEA的最佳复配溶剂。研究结果表明,单溶剂中五乙烯六胺(PEHA)的吸收和解吸效果最好,解吸温度最低,是最佳的单组分烯胺吸收剂;不同物质的量浓度比(4∶6~9∶1)的MEA-PEHA复配溶液中,物质的量浓度配比为5∶5的MEA-PEHA复配溶液饱和吸收量最大(1.72mol),平均吸收速率最高(81.74×10~(-6) mol/s),解吸温度最低(68℃),平均解吸速率最大(137.09×10~(-6) mol/s)以及解吸率较高(95.23%),是CO_2捕集的最佳MEA-PEHA混胺体系。  相似文献   

5.
针对当前燃煤电厂烟气采用有机胺化学吸收法存在能耗高、设备腐蚀严重的现状,结合烟气CO_2低分压的特点,开发了新型有机胺CO_2捕集吸收剂,每升溶液的饱和吸收CO_2量达到47.7 L,较MEA (一乙醇胺)溶液提高了29.1%,再生率较MEA提高80%以上;针对CO_2捕集工艺能耗高的特点,提出了工艺节能目标,研发了"吸收式热泵+MVR热泵"双热泵耦合低能耗CO_2捕集工艺,系统能耗较常规MEA工艺降低38.32%,节水率达到63%。开发的新型吸收剂和双热泵低能耗工艺在胜利电厂100 t/d烟气CO_2捕集工程上进行了中试验证,结果表明,在CO_2捕集率≥80%、产品CO_2纯度≥99.5%的情况下,新型吸收剂再生能耗为每吨CO_2所需蒸汽1.395 t,较MEA工业测定值降低30.2%;集成双热泵装置后系统再生能耗降至1.01 t,相比此套体系未应用前降低了21%,相比MEA工业测定值降低45%,技术指标达到国际领先水平。  相似文献   

6.
目前醇胺化学吸收法已经成为烟气二氧化碳回收的主要方法,但存在吸收速率差、再生负荷高、易降解等缺点。在前期研究的基础上,采用DEA—MDEA—AEP三元复合吸收剂,应用醇胺化学吸收流程,在10 m3/h的连续测试平台上进行三元复合吸收剂的吸收、解吸常压CO2中试测试。DEA—MDEA—AEP三元复合吸收剂最佳工艺参数为:吸收温度为40℃,气液比为10 L/m3,浓度为3 mol/L。研究表明,相同实验条件下,吸收剂脱碳率随吸收剂浓度、气液比增加而增大,随吸收温度增加先增加后下降;再沸器的热负荷则随着吸收温度,液气比以及溶液浓度的增加而增加。  相似文献   

7.
目前,乙醇胺(MEA)仍然是CO2捕集的标准工业吸收剂,但是由于MEA的失效和高能耗的问题,需要寻找新型有效的吸收剂。
本文研究了混合溶剂MEA-甲醇的吸收和再生性能,并在鼓泡反应器中一乙醇胺(MEA)、二乙醇胺(DEA)和三乙醇胺(TEA)的吸收再生系能相比较。
此外,研究了不同浓度的MEA-甲醇的吸收性能、再生性能以及密度和粘度等。并且在中试装置中研究了MEA-甲醇代替MEA作为吸收剂的工业潜力。
结果表明,MEA-甲醇吸收剂的初始吸收速率是最快的,MEA-甲醇相比于MEA吸收剂具有更大的传质系数、更大的CO2吸收效率和更低的再生能耗。
并且通过对CO2与MEA-甲醇和MEA吸收剂的反应热研究可得到:MEA-甲醇的解吸热仅为MEA的30%左右,
表明MEA-甲醇有希望替代MEA成为二氧化碳捕集用吸收剂。
    相似文献   

8.
BZA被认为是用于CO2捕集系统的一种有前途的吸收剂,然而关于其在填料塔中性能评价的研究还很少。因此,本文在鼓泡反应器中研究了BZA吸收剂以及不同浓度和组成的BZA-MEA吸收剂的吸收和再生性能。由于高浓度下BZA吸收剂会与CO2反应生成白色乳状沉淀,所以在中试捕集装置中只研究4 mol MEA/1 mol BZA的吸收再生性能。实验得到:MEA/BZA吸收剂中BZA的浓度越高,吸收速率越高,传质速率和传热速率越快,但是随着吸收剂CO2负荷的增加,BZA的传质速率比MEA传质速率下降更快。此外,4 mol MEA/1 mol BZA吸收剂在高的CO2负荷时在吸收塔和再生塔以及管道中产生白色乳状沉淀造成堵塞。  相似文献   

9.
全球温室效应日益加剧,CO2减排刻不容缓,乙醇胺(MEA)法作为目前工业上应用最广泛、技术最成熟的烟气CO2吸收方法,具有吸收速率快、成本低的优点,但是其能耗大、吸收量小和易损耗的缺点也很明显。针对目前常见的MEA二元复合胺溶液展开对比分析,阐述了MEA二元复合胺溶液的研究进展,总结了MEA吸收溶液中加入其他醇胺溶液形成二元复合胺溶液后在吸收速率、吸收量和再生能耗等方面对CO2吸收效果不同程度的改善情况。基于总结与分析,提出了吸收剂开发需要从吸收机理、溶解度、吸收负荷、解吸速率、解吸操作条件以及再生能耗等方面进行综合比选的思路,可为新型吸收剂的开发提供一定的指导。  相似文献   

10.
化学吸收法是二氧化碳捕集技术中最具潜力、应用最广泛的碳捕集技术,但再生能耗高的问题仍普遍存在,加大了碳捕集的成本,制约了化学吸收碳捕集技术的推广。从化学吸收剂(胺类吸收剂、两相吸收剂、均相少水吸收剂、离子液体与低共熔溶剂)和工艺(吸收工艺优化、解吸工艺优化与复合工艺优化)两方面进行了总结,并对化学吸收法的未来发展进行了展望。分析表明,未来的重点研究方向是开发新型混合胺体系,研发低共熔溶剂,降低两相吸收剂、少水吸收剂与功能化离子液体的黏度与成本以及实现吸收剂低能耗再生;改进吸收工艺与解吸工艺时要充分利用系统中的余热,复合工艺改进需合理耦合若干个单一工艺优化方法,以最大程度降低系统能耗。  相似文献   

11.
哌嗪(PZ)活化N-甲基二乙醇胺(MDEA)半贫液脱碳工艺是高含碳天然气预处理能耗高问题的解决途径之一。针对某天然气处理陆上终端采用的PZ活化MDEA半贫液脱碳工艺(设计天然气处理能力为8×109 m3/a,原料气中CO2体积分数为35%),采用吸收再生实验方法对系统中存在的贫液、半贫液吸收CO2性能以及富液解吸CO2性能进行考察,优选适用于半贫液脱碳工艺的胺液配方,并采用HYSYS软件建立半贫液工艺模型,对筛选出较优工艺配方下的工艺参数进行优化。结果表明:随着总胺浓度增加,贫液、半贫液吸收CO2性能及富液解吸CO2性能先增加后减小,较优总胺质量分数为40%;总胺质量分数一定时,随PZ添加量增加,贫液及半贫液吸收CO2性能先增加后减小,解吸CO2相对再生能耗先增加后降低,PZ较优添加质量分数为3%,之后随着PZ添加量的增加,解吸CO2相对再生能耗又缓慢升高,较优胺液配比(质量分数)为37%MDEA+3%PZ;模拟得到较优工艺参数为再沸器温度386.15 K,贫液吸收温度323.15 K,贫液循环量253 m3/h、半贫液循环量1147 m3/h。  相似文献   

12.
针对MEA易降解、对设备腐蚀严重等技术问题,研发了一种以MEA为主体的复合胺CO2吸收溶剂。通过对比试验得知,复合胺溶剂60°C下吸收CO2能力明显优于MEA,相同浓度下,解吸速率更快。小试试验发现,复合胺溶剂吸收能力相比提高20.0%,再生能耗下降21.5%。复合胺液的平均胺耗为0.11g/m3CO2,对碳钢设备的腐蚀速率较小,平均腐蚀速率为0.01645mm/a。  相似文献   

13.
α-纤维素中空纤维致密膜组件吸收CO_2传质过程的研究   总被引:3,自引:3,他引:0  
采用α-纤维素中空纤维致密膜研究了从N2-CO2混合气中吸收CO2的传质过程,考察了吸收剂种类(一乙醇胺、二乙醇胺、三乙醇胺)以及吸收剂的浓度和流量、气体流量、气体压力等因素对CO2吸收过程的影响。实验结果表明,3种吸收剂中一乙醇胺的吸收效果最好;当一乙醇胺的浓度为3.5mol/L、流量为10L/h、气体流量为8.9×10-6mol/s、气体压力为0.2MPa、气体走壳程、逆流操作时,总传质通量和总传质系数分别达到最大值8.7×10-5mol/(m2.s)和1.1×10-6mol/(m2.s.kPa)。吸收剂流量对CO2吸收过程没有明显的影响。  相似文献   

14.
针对神华宁煤集团有限公司400万t/a煤制油尾气脱碳工艺,为了解决脱碳净化气中CO_2超标、能耗高等问题,分析了装置运行过程中吸收塔压力、闪蒸槽温度、尾气处理量、K_2CO_3溶液质量浓度、活化剂质量浓度等因素对脱碳净化气中CO_2体积分数的影响,优化了降低净化气中CO_2体积分数的操作条件。结果表明:提高尾气脱碳工艺中吸收塔压力、K_2CO_3溶液质量浓度、活化剂质量浓度均有利于降低出口净化气中CO_2体积分数;优化工艺条件为吸收塔压力2.469 MPa、闪蒸槽温度98.52℃,尾气处理量低于6.80×10~5 m~3/h,K_2CO_3溶液和活化剂质量浓度分别为324,78 g/L,在优化操作条件下,净化气中CO_2体积分数可降低至0.17%。  相似文献   

15.
自制CO2和H2S混合气模拟焦炉煤气,以碳酸钠溶液作为脱硫碱液,用超重力设备作为脱硫实验的主体吸收设备,考察了超重力因子,液气比,原料气中CO2浓度等对脱硫率的影响。实验表明:利用碱液对CO2和H2S的吸收速率的差异,通过旋转填料床强化传质能明显的提高H2S的选择性。实验表明:利用碱液对CO2和H2S的吸收速率的差异,通过旋转填料床强化传质能明显的提高H2S的选择性。实验考察各因素及其范围:原料气中H2S浓度为3g/m3;CO2的浓度为7g/m3~14g/m3;进气速度为1m3/h~6m3/h;超重力因子为25.82~75.91;进液速度为60 L/h~180 L/h。实验中脱硫率基本可以达到95%以上,选择性(H2S和CO2脱除率之比)可以达到30左右。最佳的超重力因子为63.79,最佳液气比为50L/m3。  相似文献   

16.
万博  钱智  张珍禛  郭锴 《石油化工》2012,41(7):835-839
在旋转填充床中,分别以叔丁氨基乙氧基乙醇(TBEE)溶液和N-甲基二乙醇胺(MDEA)溶液为胺液,对含CO2和H2S的N2进行选择性脱硫实验。考察了旋转填充床转速及胺液中醇胺含量、胺液流量、气体流量与液体流量的比值(气液比)、吸收温度对胺液脱硫性能的影响。实验结果表明,在相同的条件下与MDEA溶液相比,TBEE溶液的脱硫率(η)和选择性因子(S)更大,体现出空间位阻胺选择性脱硫的优势;胺液中醇胺含量和胺液流量的增大可提高η、降低S;旋转填充床转速增大有利于提高η,气液比增大有助于选择性脱硫;当N2中H2S含量为0.6%~0.8%(φ)和CO2含量为8%(φ)时,在w(TBEE)=5%、旋转填充床转速1 200 r/min、胺液流量6 L/h、气液比200、吸收温度30℃的条件下,S可达22~28。  相似文献   

17.
国内高含CO_2天然气处理装置主要采用活化MDEA脱碳工艺。以DEA、MEA、PZ为活化剂,总胺物质的量浓度控制在4 mol/L。利用HYSYS软件建立运算模型,研究这3种活化MDEA溶液对CO_2的吸收性能和解吸性能,通过分析认为,高含CO_2天然气深度脱碳处理宜采用PZ为活化剂。对PZ的活化机理进行研究,发现PZ作为活化剂的效果远胜于DEA和MEA。最后,分析不同吸收温度及CO_2分压下PZ浓度变化对活化性能的影响,发现加入少量PZ即可大幅提高PZ活化MDEA溶液与CO_2反应速率,在不同CO_2分压和吸收温度的条件下均能满足高含CO_2天然气的脱碳处理要求,适应性较强,建议活化MDEA溶液中PZ的质量分数为3%~5%。  相似文献   

18.
基于MDEA溶液和不同配比位阻胺溶液对H2S吸收容量的静态测定实验结果,在操作压力为8.3 MPa的超重力侧线试验装置上,考察不同气液比条件下MDEA溶液和优化配方的位阻胺溶液对高酸性天然气的选择性脱硫效果,同时考察了超重力机转速对溶剂选择性脱硫效果的影响。结果表明,几种溶剂中以8号溶剂对H2S的吸收容量最大,40 ℃和50 ℃条件下H2S的最大吸收容量分别为79.67 g/L和59.20 g/L,采用超重力脱硫工艺,可将天然气中硫化氢质量浓度由2.0×105 mg/m3降至100 mg/m3以下,在气液比95左右时,净化气中H2S、总硫质量浓度分别为19.8 mg/m3和32.27 mg/m3,CO2体积分数为0.38%,达到二类天然气指标要求。  相似文献   

19.
 一定生产条件下,解吸塔解吸率是催化裂化装置吸收稳定系统的关键操作变量,对本系统及下游气分装置的能耗和丙烯收率有决定性影响,因此选择优化的解吸率并以此指导生产,是实现吸收稳定系统和气分联合装置运行优化的关键。以流程模拟、过程能量综合和数值回归技术为手段,分别研究了解吸率对丙烯收率、能耗和效益的影响,并以此为基础提出了求解最优解吸率的方法。对1套0.6 Mt/a 催化裂化装置吸收稳定系统及配套气分装置的应用表明,笔者建立的方法可行且有效,按其求解的最优解吸率操作,可提高联合装置综合效益274.7×104 RMBYuan/a。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号