首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pure Li4Ti5O12, modified Li4Ti5O12/C, Li4Ru0.01Ti4.99O12 and Li4Ru0.01Ti4.99O12/C were successfully prepared by a modified solid-state method and its electrochemical properties were investigated. From the XRD patterns, the added sugar or doped Ru did not affect the spinel structure. The results of electrochemical properties revealed that Li4Ru0.01Ti4.99O12/C showed 120 and 110 mAh/g at 5 and 10 C rate after 100 charge/discharge cycles. Li4Ru0.01Ti4.99O12/C exhibited the best rate capability and the highest capacity at 5 and 10 C charge/discharge rate owing to the increase of electronic conductivity and the reduction of interface resistance between particles of Li4Ti5O12.It is expected that the Li4Ru0.01Ti4.99O12/C will be a promising anode material to be used in high-rate lithium ion battery.  相似文献   

2.
Li4Ti5O12/graphene composite was prepared by a facile sol-gel method. The lattice structure and morphology of the composite were investigated by X-ray diffraction (XRD) and scanning electronic microscopy (SEM). The electrochemical performances of the electrodes have been investigated compared with the pristine Li4Ti5O12 synthesized by a similar route. The Li4Ti5O12/graphene composite presents a higher capacity and better cycling performance than Li4Ti5O12 at the cutoff of 2.5-1.0 V, especially at high current rate. The excellent electrochemical performance of Li4Ti5O12/graphene electrode could be attributed to the improvement of electronic conductivity from the graphene sheets. When discharged to 0 V, the Li4Ti5O12/graphene composite exhibited a quite high capacity over 274 mAh g−1 below 1.0 V, which was quite beneficial for not only the high energy density but also the safety characteristic of lithium-ion batteries.  相似文献   

3.
A porous Li4Ti5O12 anode material was successfully synthesized from mixture of LiCl and TiCl4 with 70 wt% oxalic acid by a modified one-step solid state method. The anode material Li4Ti5O12 exhibited a cubic spinel structure and only one voltage plateau occurred around 1.5 V. The initial capacity of porous Li4Ti5O12 was 167 and 133 mAh g−1 at 0.5 and 1C charge/discharge rate, respectively, and the capacity retention maintained above 98% after 200 cycles. The porous Li4Ti5O12 structure showed promising rate performance with a capacity of 70 mAh g−1 at charge/discharge 10C rate after 200 cycles. It was demonstrated that the porous structure could withstand 50C charge/discharge rate and exhibited excellent cycling stability.  相似文献   

4.
Since carbon coating can effectively improve electrical wiring of Li4Ti5O12 and thus enhance its high rate performance, a novel and simple citric acid sol-gel method for in situ carbon coating is employed in this study. The effects of the amount of the carbon source in the starting xerogel on the particle size, the resistance and the electrochemical performance of the synthesized Li4Ti5O12 samples are systematically studied. The physical and electrochemical properties of the obtained samples have been characterized by XRD, TG-DSC, SEM, TEM, BET, A.C. impedance, galvanostatically charge-discharge and cyclic voltammetry tests. The results show that the initial amount of the carbon source in the starting xerogel is a critical factor which determines the content of the coated carbon and the pore volume, therefore governs the high rate performance of the Li4Ti5O12/C composites. The Li4Ti5O12/C composite with in situ carbon coating of 3.5 wt% exhibits the best electrochemical performance which delivers delithiation capacities of 143.6 and 133.5 mAh g−1 with fairly stable cycling performance even after 50 cycles at 0.5C and 1C rate, respectively.  相似文献   

5.
The effects of K2O and Li2O-doping (0.5, 0.75 and 1.5 mol%) of Fe2O3/Cr2O3 system on its surface and the catalytic properties were investigated. Pure and differently doped solids were calcined in air at 400-600 °C. The formula of the un-doped calcined solid was 0.85Fe2O3:0.15Cr2O3. The techniques employed were TGA, DTA, XRD, N2 adsorption at −196 °C and catalytic oxidation of CO oxidation by O2 at 200-300 °C. The results revealed that DTA curves of pure mixed solids consisted of one endothermic peak and two exothermic peaks. Pure and doped mixed solids calcined at 400 °C are amorphous in nature and turned to α-Fe2O3 upon heating at 500 and 600 °C. K2O and Li2O doping conducted at 500 or 600 °C modified the degree of crystallinity and crystallite size of all phases present which consisted of a mixture of nanocrystalline α- and γ-Fe2O3 together with K2FeO4 and LiFe5O8 phases. However, the heavily Li2O-doped sample consisted only of LiFe5O8 phase. The specific surface area of the system investigated decreased to an extent proportional to the amount of K2O and Li2O added. On the other hand, the catalytic activity was found to increase by increasing the amount of K2O and Li2O added. The maximum increase in the catalytic activity, expressed as the reaction rate constant (k) measured at 200 °C, attained 30.8% and 26.5% for K2O and Li2O doping, respectively. The doping process did not modify the activation energy of the catalyzed reaction but rather increased the concentration of the active sites without changing their energetic nature.  相似文献   

6.
Polycrystalline Ti3SiC2 suffered from serious hot corrosion attack in the mixture of 75wt.%Na2SO4 + 25wt.%NaCl melts at 850 °C. In order to improve the hot corrosion resistance of this material, pre-oxidation treatment was conducted at 1200 °C in air for 2 h. A duplex oxide scale with an outer layer of TiO2 and an inner layer of a mixture of TiO2 and SiO2 was formed during the pre-oxidation. Because the outer oxide layer of the pre-oxidation treated specimens could inhibit hot corrosion process, they exhibited good hot corrosion resistance in the mixture of 75wt.%Na2SO4 + 25wt.%NaCl melts at 850 °C for 50 h. However, during the hot corrosion the outer layer of TiO2 would degrade gradually. Once the outer layer damaged, the hot corrosion rate increased sharply, the corrosion behavior was similar to Ti3SiC2 corroded under the same conditions. The microstructure and phase compositions of the hot corrosion samples were investigated by SEM/EDS and XRD.  相似文献   

7.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

8.
X.H Wang 《Corrosion Science》2003,45(5):891-907
The isothermal oxidation behavior of bulk Ti3AlC2 has been investigated at 1000-1400 °C in air for exposure times up to 20 h by means of TGA, XRD, SEM and EDS. It has been demonstrated that Ti3AlC2 has excellent oxidation resistance. The oxidation of Ti3AlC2 generally followed a parabolic rate law with parabolic rate constants, kp that increased from 4.1×10−11 to 1.7×10−8 kg2 m−4 s−1 as the temperature increased from 1000 to 1400 °C. The scales formed at temperatures below 1300 °C were dense, adherent, resistant to cyclic oxidation and layered. The inner layer of these scales formed at temperatures below 1300 °C was continuous α-Al2O3. The outer layer changed from rutile TiO2 at temperatures below 1200 °C to a mixture of Al2TiO5 and TiO2 at 1300 °C. In the samples oxidized at 1400 °C, the scale consisted of a mixture of Al2TiO5 and, predominantly, α-Al2O3, while the adhesion of the scales to the substrates was less than that at the lower temperatures. Effect of carbon monoxide at scale/substrate was involved in the formation of the continuous Al2O3 layers.  相似文献   

9.
Ti3AlC2 suffers severe Na2SO4-induced corrosion attacks at temperatures higher than 800 °C in air. A convenient and efficient pre-oxidation method is proposed to enhance the corrosion resistance of Ti3AlC2. The corrosion weight-changes of the pre-oxidized samples were decreased by about four orders of magnitude compared with those of the untreated specimens. The mechanism on improvement of corrosion resistance was investigated by means of thermogravimetric analysis, X-ray diffraction and scanning electron microscopy/energy-dispersive spectroscopy. A continuous and adherent α-Al2O3 scale was prepared by high-temperature pre-oxidation treatment in air. The preformed dense Al2O3 scale has good compatibility with the Ti3AlC2 substrate, and consequently, can act as an efficient barrier against corrosion. Long-time corrosion tests demonstrate that the Al2O3 scale conserves after corrosion attack and is capable of long-term stability.  相似文献   

10.
Non-ohmic and dielectric properties of Ca2Cu2Ti4O12 (CaCu3Ti4O12/CaTiO3 composite) ceramics prepared by a polymer pyrolysis method (PP-ceramic samples) are investigated. The PP-ceramics show a highly dense structure and improved non-ohmic and dielectric properties compared to the ceramics obtained by a solid state reaction method (SSR-ceramic samples). ?′ (tan δ) of the PP-ceramic samples is found to be higher (lower) than that of the SSR-ceramic samples. Interestingly, the PP-ceramic sintered at 1050 °C for 10 h exhibits the high ?′ of 2530 with weak frequency dependence below 1 MHz, the low tan δ less than 0.05 in the frequency range of 160 Hz-177 kHz, and the little temperature coefficient, i.e., |Δ?′| ≤ 15 % in the temperature range from −55 to 85 °C. These results indicate that the CaCu3Ti4O12/CaTiO3 composite system prepared by PP method is a promising high-?′ material for practical capacitor application.  相似文献   

11.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

12.
The effects of BaCu(B2O5) additives on the sintering temperature and microwave dielectric properties of (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were investigated. The (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics were not able to be sintered below 1000 °C. However, when BaCu(B2O5) were added, they were sintered below 1000 °C and had the good microwave dielectric properties. It was suggested that a liquid phase with the composition of BaCu(B2O5) was formed during the sintering and assisted the densification of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics at low temperature. BaCu(B2O5) powders were produced and used to reduce the sintering temperature of the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics. Good microwave dielectric properties of Q × f = 35,000 GHz, ?r = 18.5.0 and τf = −51 ppm/°C were obtained for the (Mg0.7Zn0.3)0.95Co0.05TiO3 ceramics containing 7 wt.% mol% BaCu(B2O5) sintered at 950 °C for 4 h.  相似文献   

13.
Microwave dielectric properties and microstructures of (Mg0.95Co0.05)TiO3 ceramics prepared by a new sintering method (reaction-sintering method) were investigated. A pure phase of (Mg0.95Co0.05)TiO3 was obtained by the new method and excellent dielectric properties were observed due to uniformities of the microstructure and the phase. In contrast, the secondary phase (Mg0.95Co0.05)Ti2O5 was observed in samples prepared by conventional sintering method. In order to study the influence of secondary phase on the microwave dielectric properties quantitatively, the weight fraction of (Mg0.95Co0.05)Ti2O5 was calculated on the basis of Rietveld refinement. The pore-free?r values of specimens prepared by two different methods indicated that porosity plays an important role in the ?r values of (Mg0.95Co0.05)TiO3 ceramics. Specimens sintered by reaction-sintering method at 1350 °C for 4 h possess excellent dielectric properties with an ?r of 16.3, a Q × f value of 244,500 GHz, and a τf value of −53.5 ppm/°C.  相似文献   

14.
BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites were prepared by a solid-state reaction method, and their dielectric and tunable characteristics were investigated for the potential application as microwave tunable materials. It is observed that the addition of Mg2SiO4-MgO into BaZr0.2Ti0.8O3 form ferroelectric (BaZr0.2Ti0.8O3)-dielectric (Mg2SiO4-MgO) composites. The dielectric constant and loss tangent of BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites have been reduced and the overall tunability is maintained at a sufficiently high level. An anomalous relation between dielectric constant and tunability was observed: with the increase of Mg2SiO4 content (>30 wt%), the dielectric constant of composite decreases and the tunability increases. The anomalous increased tunability can be attributed to redistribution of the electric field. BaZr0.2Ti0.8O3-Mg2SiO4-MgO composites have tunability of 14.2-17.9% at 100 kHz under 2 kV/mm, indicating that it is a promising candidate material for tunable microwave applications requiring low dielectric constant.  相似文献   

15.
Mechanism of charge compensation on lanthanum, (La3+) substitution on Ca site in calcium copper titanate (CaCu3Ti4O12), and its effect on resulting electrical and dielectric properties has been studied in the present investigation. For this purpose samples were prepared according to two stoichiometries viz. LaxCa(1−3x/2)Cu3Ti4O12 (x ≤ 0.09) and LaxCa(1−x)Cu3Ti4O12 (x = 0.03) by solid state ceramic route. The former represents ionic compensation while the later is in accordance with electronic compensation. Nature of charge carriers is identified by measuring Seebeck coefficient which is found to be negative in the entire range of measurement. In order to understand the mechanism of conduction, ac conductivity is measured as a function of temperature and frequency. Space charge polarization is the dominant polarization mechanism phenomenon at low frequency and high temperature while orientation polarization dominates at low temperature and high frequency. Impedance analysis confirms the formation of internal barrier layers which is responsible for high dielectric constant in these samples.  相似文献   

16.
The spinel compound Li4Ti5O12 was synthesized by a solid state method. In this synthesizing process, anatase TiO2 and Li2CO3 were used as reactants. The influences of reaction temperature and calcination time on the properties of products were studied. When calcination temperature was 750 °C and calcination temperature was 24 h, the products exhibited good electrochemical properties. Its discharge capacity reached 160 mAh g−1 and its capacity retention was 97% at the 50th cycle when the current rate was 1 C. When current rate increased to 10 C, its first discharge capacity could reach 136 mAh g−1, and its capacity retention was 85% at the 50th cycle.  相似文献   

17.
The corrosion behavior of polycrystalline Ti3SiC2 was studied in the presence of Na2SO4 deposit and water vapor at 900°C and 1000°C. The mass gain per unit area of the samples superficially coated with Na2SO4 exposed to water vapor was slightly lower than that of the samples corroded without water vapor. The microstructure and composition of the scales were investigated by SEM/EDS and XRD. Pores were observed in the corroded sample surfaces. The main corrosion phases on the sample surface were identified by XRD as TiO2, Na2Si2O5 and Na2TiO3. After Ti3SiC2 corroded in the presence of the Na2SO4 deposit and water vapor, the scale had a three-layer microstructure, which was different from the duplex corrosion scale formed on Ti3SiC2 beneath the Na2SO4 film without water vapor. Because water vapor penetrated the corrosion layer and then reacted with SiO2 to form volatile Si(OH)4, an intermediate porous and TiO2-enriched layer formed in the corrosion layer.  相似文献   

18.
Fe3O4 micro-spheres with nanoparticles close-packed architectures were synthesized via a simple chemical method using (NH4)2Fe(SO4)2·6H2O, hexamethylenetetramine, and NaF as reaction materials. This chemical synthesis took place in a vitreous jar under low temperature (90 °C) and atmospheric pressure. The morphology and structure of the as-synthesized products were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectrum. Electrochemical properties of the as-synthesized Fe3O4 micro-spheres as anode electrode of lithium ion batteries were studied by conventional charge/discharge tests, which exhibit steady charge/discharge platforms at different current densities. The as-prepared Fe3O4 electrode shows high initial discharge capacity of 1166 and 1082 mAh g−1 at current density of 0.05 and 0.1 mA cm−2, respectively.  相似文献   

19.
Pure and Pr6O11-doped CaCu3Ti4O12 (CCTO) ceramics were prepared by conventional solid-state reaction method. The compositions and structures were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The influences of Pr-ion concentration on dielectric properties of CCTO were measured in the ranges of 60 Hz-3 MHz and 290-490 K. The third phase of Ca2CuO3 was observed from the XRD of CCTO ceramics. From SEM, the grain size was decreased obviously with high valence Pr-ion (mixing valence of Pr3+ and Pr4+) substituting Ca2+. The room temperature dielectric constant of Pr-doped CCTO ceramics, sintered at 1323 K, was an order of magnitude lower than the pure CCTO ceramics due to the grain size decreasing and Schottky potential increasing. The dielectric spectra of Pr-doped CCTO were flatter than that of pure CCTO. The loss tangent of Pr-doped CCTO ceramics was less than 0.20 in 2 × 102-105 Hz region below 440 K. The complex impedance spectra of pure and Pr-doped CCTOs were fitted by ZView. From low to high frequency, three semicircles were observed corresponding to three different conducting regions: electrode interface, grain boundary and grain. By fitting the resistors R and capacitors C, the activation energies of grain boundary and electrode contact were calculated. All doped CCTOs showed higher activation energies of grain boundary and electrode than those of pure CCTO ceramics, which were concordant with the decreasing of dielectric constant after Pr6O11 doping.  相似文献   

20.
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) nanotubes were synthesized by sol-gel technique using nanochannel porous anodic aluminum oxide (AAO) templates, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). BLT nanotubes with diameter of around 240 nm and the wall thickness of about 25 nm exhibited a single orthorhombic perovskite structure and highly preferential crystal growth along the [1 1 7] orientation, which have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. The formation mechanism of BLT nanotubes was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号