首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Al2O3/5%SiC nanocomposites were fabricated by pressureless sintering using MgO as a sintering aid and then post hot-isostatic pressed (HIP), which can subsequently break through the disadvantage of hot-pressing process. The MgO additive was able to promote the densification of the composites, but could not induce the grain growth of Al2O3 matrix due to the grain growth inhibition by nano-sized SiC particles. After HIP treatment, Al2O3/SiC nanocomposites achieved full densification and homogeneous distribution of nano-sized SiC particles. Moreover, the fracture morphology of HIP treated specimens was identical with that of the hot-pressed Al2O3/SiC nanocomposites showing complete transgranular fracture. Consequently, high fracture strength of 1 GPa was achieved for the Al2O3/5%SiC nanocomposites by pressureless sintering and post HIP process.  相似文献   

2.
The oxidation behavior of TiAl alloys containing dispersed particles of (5, 10, 15 wt.%) SiC, (3,5 wt.%) Si3N4 or (3, 5, 10 wt.%) TiB2 was studied between 800 and 1200°C in atmospheric air. The TiAl−(SiC, Si3N4) alloys oxidized to TiO2, Al2O3, and SiO2. The TiAl−TiB2 alloys oxidized to TiO2, Al2O3, and B2O3 which evaporated during oxidation. Improvement in oxidation resistance accompanied by thin, dense scale formation due to the addition of dispersoids originated primarily from the enhanced alumina-forming tendency, improved scale adhesion by oxide grain refinement owing to the beneficial effect of dispersoids, and the incorporation of SiO2 within the oxide scale in the case of TiAl−(SiC, Si3N4) alloys.  相似文献   

3.
Synthesis and sintering of an alumina /titanium diboride nano-composite have been studied as an alternative for pure titanium diboride for ceramic armor applications. Addition of TiB2 particles to an Al2O3 matrix can improve its fracture toughness, hardness and flexural strength and offer advantages with respect to wear and fracture behavior. This contribution, for the first time, reports the sintering, microstructure, and properties of Al2O3–TiB2 nano-composite densified with no sintering aids. Nano-composite powder was produced by combination of sol–gel and mechano-chemical methods. The densification experiments were carried out using both hot pressing and pressureless sintering routes. In the pressureless sintering route, a maximum of 92.3% of the theoretical density was achieved after sintering at 1850 °C for 2 h under vacuum. However, hot pressing at 1500 °C for 2 h under the same condition led to achieving a 99% of the theoretical density. The hot pressed Al2O3–TiB2 nano-composites exhibit high Vickers hardness (16.1 GPa) and a modest indentation toughness (~ 4.2 MPa.m1/2).  相似文献   

4.
The TiB2 matrix ceramics reinforced by aluminum borate whiskers (Al18B4O33 w) had been prepared by the pressureless sintering method. The mechanical properties and densification behavior of the TiB2 matrix ceramics were investigated. The results showed that Al18B4O33 w was in situ synthesized by the reaction of boehmite (AlOOH) and TiB2 powders during the sintering process. Increasing the sintering temperature had benefited for densification of the TiB2 matrix ceramics. Al18B4O33 w could increase the flexural strength and Vicker’s hardness. It is obtained that the maximum value Vicker’s hardness with 1.81 GPa and flexural strength with 82 MPa for samples sintered at 1600°C.  相似文献   

5.
The effect of TiB2 addition on sinterability and mechanical properties of B4C material was investigated. It was found that addition of TiB2 aids the sintering process and permits pressureless sintering at temperatures between 2050 and 2150 °C. This also alleviates grain growth during sintering. The relative density reaches 98.5% of the theoretical density by increasing the percentage of TiB2 in the composition. The mechanical properties such as hardness, fracture toughness, and bending strength were improved remarkably by addition of TiB2.  相似文献   

6.
TiB2–SiC ceramic composites, with different contents of SiC whiskers (SiCw), as a ceramic sinter-additive, were prepared by the hot pressing process at 1850 °C for 2 h under a pressure of 20 MPa. For comparison, a monolithic TiB2 ceramic was also fabricated under the identical temperature, pressure, atmosphere, and holding time by the hot pressing process. The effects of fabrication process and SiC whiskers on microstructural features, phase evolution and mechanical properties were investigated. Hardness measurements revealed an initial increase in hardness for TiB2–SiC compared to TiB2. Also the improvement of the fracture toughness was attributed to the toughening and strengthening effects of SiC whiskers such as crack deflection. The results showed that promoted densification of TiB2–SiC ceramic composites is due to addition of SiC whiskers and reduction of oxide impurities by reacting with SiC whiskers and removing them from the surface layer of TiB2 particles. The reaction between TiB2 particles and SiC whiskers led to in-situ formation of TiC phase in the matrix as well. In general, it is concluded that the sinterability of TiB2-based composites was remarkably improved by introducing SiC whiskers compared to the single phase TiB2 ceramic.  相似文献   

7.
In the present study, mechanically alloyed Al-12Si, B2O3 and TiO2 powder was deposited onto an aluminum substrate using atmospheric plasma spraying (APS). The effects of mechanical alloying (MA) time and plasma parameters (arc current and primary/secondary/carrier gas flow rate) on in-situ reaction intensity and in-flight particle characteristics (temperature and velocity) have been investigated. It has been observed that MA time has a remarkable effect on powder morphology and relative amount of in-situ formed TiB2 and γ-Al2O3. In-flight particle diagnostic measurements demonstrate that among the plasma parameters arc current has the strongest effect on in-flight particle velocity and temperature. Also, results indicate that in-flight particle velocity is more dominant than temperature on the relative amount of in-situ formed phases.  相似文献   

8.
TiAl alloys incorporated in (0,3,5,10) wt.% TiB2 dispersoids were manufactured via mechanical alloyingspark plasma sintering (MA-SPS), and their cyclic oxidation characteristics were studied at 800, 900 and 1000°C in air. The cyclic oxidation resistance of the prepared TiAl-TiB2 composites effectively increased with increases in TiB2 content. The oxide scale formed consisted of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (Al2O3+TiO2) mixed layer. The scale adherence was relatively good, and much thinner oxide scales, when compared to TiB2-free TiAl alloys, were formed on the prepared composites. The incorporated TiB2 dispersoids oxidized to TiO2 and B2O3 which evaporated during oxidation.  相似文献   

9.
In the present study, the densification of Ti/TiB composites, the growth behavior ofin-situ formed TiB reinforcement, the effects of processing variables — such as reactant powder (TiB2, B4C), sintering temperature and time — on the microstructures and the mechanical properties ofin-situ processed Ti/TiB composites have been investigated. Mixtures of TiB2 or B4C powder with pure titanium powder were compacted and presintered at 700°C for 1 hr followed by sintering at 900, 1000, 1100, 1200, and 1300°C, respectively, for 3hrs. Some specimens were sintered at 1000°C for various times in order to study the formation behavior of TiB reinforcementin-situ formed within the pure Ti matrix. TiB reinforcements were formed through different mechanisms, such as the formation of fine TiB and the formation of coarse TiB by Ostwald ripening or the coalescence of fine TiB. There was no crystallographic relationship between TiB reinforcement and the matrix. There were voids at the interface between the TiB reinforcement and the Ti matrix due to the preferential growth of coarse TiB without a particular crystallographic relationship with pure Ti matrix and the surface energy between the Ti matrix and TiB reinforcements. Therefore, the densification of Ti/TiB2 compacts was hindered by the preferential growth of coarse TiB reinforcements. The mechanical properties ofin-situ processed composites were evaluated by measuring the compressive yield strength at ambient and high temperatures. The compressive yield strength of thein situ processed composites was higher than that of the Ti-6A1-4V alloy. It was also found that the compressive yield strength of the composite made from TiB2 reactant powder was higher than that of the composite made from B4C at the same volume fraction of reinforcement. A crack path examination suggested that the bonding nature of interface between matrix and reinforcement made from TiB2 reactant powder was better than that made from B4C.  相似文献   

10.
TiC whiskers were synthesized by carbothermal reduction process. By using these whiskers as the toughening phase, a novel TiB2 based ceramic cutting tool material was prepared. Due to that the thermal expansion coefficient of TiC is close to that of TiB2, the addition of no more than 30 vol% TiC whisker not only has little adverse effect on the density and flexure strength of the composite, but also can refine the grains, reduce the defects and improve the grain strength. As a result, both the fracture toughness and flexure strength of the TiB2 based ceramic composite can be significantly improved. Appropriate sintering temperature and holding time can reduce defects, improve the strength of grains and grain boundaries and enhance the toughening effect of TiC whiskers. Experimental results showed that when the whisker content was 30 vol%, the sintering temperature was 1700 °C and the holding time was 30 min, the flexure strength, fracture toughness and Vickers hardness of the TiB2 based ceramic cutting tool material was 860 MPa, 7.9 MPa·m1/2 and 22.6GPa, respectively.  相似文献   

11.
Strength retention is important for tool materials at high temperature because cutting temperature in machining is ranged from room temperature to 1000 °C. A study examining the strength properties and fracture behaviour of TiB2-TiC-based composite ceramic cutting tool materials is presented at different temperatures. MoSi2 and SiC additives are considered to investigate their effects on the density, microstructure, strength and failure mechanism of composites. It is found that the addition of SiC contributed more to the high-temperature strength of composites than MoSi2, but it did not improve the room-temperature strength, despite grain refinement. The TBAVS8 composite has a flexural strength of 800 MPa at room temperature and can retain 75% at 900 °C. At room temperature, the fracture behaviour of composites was dominated by the strong bonding of the Ni binder phase. At high temperatures, the softer Ni binder phase was pinned, and its sliding was inhibited by SiC particles, which decelerated the strength degradation.  相似文献   

12.
The effects of adding SiC as a reinforcement and TiN as an additive on TiB2-based composites fabricated by the spark plasma sintering (SPS) technique were investigated. SPS was implemented at the sintering conditions of 1900 °C temperature, 7 min holding time and 40 MPa pressure. Adding these two secondary phases had noticeable effects on the microstructure of TiB2-based composites. A relative densities of 99.9% was obtained for TiB2–SiC–TiN composite. Detection of in-situ formed phases and investigation on them were done using SEM, XRD, EDS and thermodynamic assessment. These evaluations proved the formation of in-situ phases of TiC, BN nano-platelets, TiSi and B4C in the TiB2-based composite codoped with SiC and TiN. Formation of these in-situ phases had fascinating effects on the sinterability and ultimate microstructure of titanium diboride.  相似文献   

13.
Combustion synthesis involving metallothermic reduction of Fe2O3 and TiO2 was conducted in the mode of self-propagating high-temperature synthesis (SHS) to fabricate FeAl-based composites with dual ceramic phases, TiB2/Al2O3 and TiC/Al2O3. The reactant mixture included thermite reagents of 0.6Fe2O3+0.6TiO2+2Al, and elemental Fe, Al, boron, and carbon powders. The formation of xFeAl−0.6TiB2−Al2O3 composites with x=2.0−3.6 and yFeAl−0.6TiC−Al2O3 composites with y=1.8−2.75 was studied. The increase of FeAl causes a decrease in the reaction exothermicity, thus resulting in the existence of flammability limits of x=3.6 and y=2.75 for the SHS reactions. Based on combustion wave kinetics, the activation energies of Ea=97.1 and 101.1 kJ/mol are deduced for the metallothermic SHS reactions. XRD analyses confirm in situ formation of FeAl/TiB2/Al2O3 and FeAl/TiC/Al2O3 composites. SEM micrographs exhibit that FeAl is formed with a dense polycrystalline structure, and the ceramic phases, TiB2, TiC, and Al2O3, are micro-sized discrete particles. The synthesized FeAl−TiB2−Al2O3 and FeAl−TiC−Al2O3 composites exhibit the hardness ranging from 12.8 to 16.6 GPa and fracture toughness from 7.93 to 9.84 MPa·m1/2.  相似文献   

14.
Hard and wear resistant Al2O3-TiB2-TiN composite coatings have been developed on low carbon steel (AISI 1025) substrate by following two different routes involving laser surface treatment. In the first (termed ‘in-situ’ process), reinforcing phases TiB2 and TiN, as well as the matrix Al2O3 of the composite are synthesized in-situ by laser-triggered self-propagating high temperature synthesis (SHS) from a mixture of Al, TiO2 and h-BN and coated onto the substrate surface by laser surface alloying (LSA). In the second (termed ‘ex-situ’ process), the constituents Al2O3, TiB2 and TiN of the coating are provided directly as a pre-placed precursor powder mix and laser surface alloyed onto the substrate. Of these two laser assisted manufacturing procedures, it is of interest to determine the one that is more appropriate for the development of a hard, wear resistant coating. In the present work, investigation of the comparative merits and demerits of Al2O3-TiB2-TiN coatings produced by in-situ and ex-situ processes is attempted through analysis of microstructure and evaluation of mechanical and tribological properties.  相似文献   

15.
Titanium diboride (TiB2) and its ceramic composites were prepared by hot pressing process. The sintering process, phase evolution, microstructure and mechanical properties of TiB2 ceramics prepared by using different milling media materials: tungsten carbide (WC/Co) or SiAlON was studied. It was found that the inclusion of WC/Co significantly improved the sinterability of the TiB2 ceramics. A core/rim structure with pure TiB2 as the core and W-rich TiB2, i.e. (Ti,W)B2 as the rim was identified. Microstructure analysis revealed that this core/rim structure was formed through a dissolution and re-precipitation process. In addition, silicon carbide (SiC) was also introduced to form TiB2–SiC composites. The addition of SiC as the secondary phase not only improved the sinterability but also led to greatly enhanced fracture toughness. The optimum mechanical properties with Vickers hardness ~ 22 GPa, and fracture toughness ~ 6 MPa m1/2 were obtained on TiB2–SiC composites milled with WC/Co.  相似文献   

16.
The Oxidation of TiB2 Particle-Reinforced TiAl Intermetallic Composites   总被引:3,自引:0,他引:3  
Lee  D. B.  Kim  M. H.  Yang  C. W.  Lee  S. H.  Yang  M. H.  Kim  Y. J. 《Oxidation of Metals》2001,56(3-4):215-229
The oxidation kinetics of TiAl alloys with and without (3, 5, 10 wt.%) TiB2 dispersoids were studied between 1073 and 1273 K in atmospheric air. The inert TiB2 dispersoids effectively increased the oxidation resistance of TiAl alloys. The higher the TiB2 dispersoids content, the more pronounced the effect. The oxide scale formed on TiAl–TiB2 composites was triple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner (TiO2+Al2O3) mixed layer. No B2O3 was observed within the oxide scale because of its high vapor pressure. A thin Ti3Al sublayer and discrete TiN particles were found at the oxide–substrate interface. During the oxidation of TiAl alloys with and without TiB2 dispersoids, titanium ions diffused outwardly to form the outer TiO2 layer, while oxygen ions transported inwardly to form the inner (TiO2+Al2O3) mixed layer. The increased oxidation resistance by the addition of TiB2 was attributed to the enhanced alumina-forming tendency and thin and dense scale formation.  相似文献   

17.
In this paper, Al2O3/TiB2/SiCw ceramic cutting tools with different volume fraction of TiB2 particles and SiC whiskers were produced by hot pressing. The fundamental properties of these composite tool materials were examined. Machining tests with these ceramic tools were carried out on the Inconel718 nickel-based alloys. The tool wear rates and the cutting temperature were measured. The failure mechanisms of these ceramic tools were investigated and correlated to their mechanical properties. Results showed that the fracture toughness and hardness of the composite tool materials continuously increased with increasing SiC whisker content up to 30 vol.%. The relative density decreased with increasing SiC whisker content, the trend of the flexural strength being the same as that of the relative density. Cutting speeds were found to have a profound effect on the wear behaviors of these ceramic tools. The ceramic tools exhibited relative small flank and crater wear at cutting speed lower than 100 m/min, within further increasing of the cutting speed the flank and crater wear increased greatly. Cutting speeds less than 100 m/min were proved to be the best range for this kind of ceramic tool when machining Inconel718 nickel-based alloys. The composite tool materials with higher SiC whisker content showed more wear resistance. Abrasive wear was found to be the predominant flank wear mechanism. While the mechanisms responsible for the crater wear were determined to be adhesion and diffusion due to the high cutting temperature.  相似文献   

18.
Spark plasma sintering method, at the temperature of 1800 °C under the pressure of 40 MPa for 7 min, was employed for fabrication of TiB2–SiC-based composites. The influences of short carbon fiber (Cf) addition (2 wt%) on microstructural, mechanical and thermal properties of TiB2–SiC ceramics were studied. Carbon fiber addition increased the relative density of sintered composite which observed to have direct effect on mechanical and thermal properties. The mechanical properties of composites were measured by nanoindentation method. Hardness and elastic modulus of TiB2/SiC interfaces in carbon fiber doped composite were measured 27.1 GPa and 445 GPa, respectively, while these values were obtained 24.2 GPa and 422 GPa for carbon-free sample. The thermal diffusivity of samples was measured by laser flash technique (LFT). It was found that TiB2–SiC–Cf composite has a higher thermal conductivity (55 w/m.K) compared to TiB2–SiC ceramic with a value of 54.8 w/m.K.  相似文献   

19.
Titanium oxide (TiO2) and boron carbide (B4C) were added to TiB2 raw powders to prepare porous TiB2 ceramics by reactive spark plasma sintering, and the gas escape (such as CO and B2O3) resulted in higher porosity. X-ray Diffraction results indicated that the reduction reaction was completed after the reactive spark plasma sintering process. The porosity could be controlled by changing the ratio of synthesized TiB2 to raw TiB2 powders. The porosity of porous TiB2 ceramics with 20 wt.% and 40 wt.% synthsized TiB2 ceramics are 18.5% and 22.2%, respectively. The thermal diffusivity of the porous TiB2 ceramics decreased with the porosity due to the low diffusivity behavior of gas and vacuum in pores, and the thermal conductivity for porous TiB2 ceramics decreased as the temperature increased throughout the measured temperature range. The results here pointed to a potential method for fabricating porous TiB2 ceramics with controllable thermophysical properties.  相似文献   

20.
TiB2-based ceramic composites with different amounts of ZrB2 and SiC were prepared by spark plasma sintering at 1700 °C with an initial pressure of 40 MPa and a holding time of 10 min. The (TixZry)B2 solid solution was found in the sintered TiB2/ZrB2/SiC composites by XRD. The microstructural and mechanical properties of the prepared samples were investigated. The composite with the addition of 30 vol.% ZrB2 shows better comprehensive performances, and the bending strength and the fracture toughness of the composite are 780.5 MPa and 7.34 MPa m1/2, respectively. The generation of the (TixZry)B2 solid solution makes the microstructures of the composites finer and more homogeneous, which has played a very important role in grain refinement and interface fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号