首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
往复流多孔介质燃烧器的二维数值模拟与结构改进   总被引:1,自引:0,他引:1  
对往复式惰性多孔介质燃烧器进行了二维数值模拟,模型的有效性通过实验数据进行验证.在燃烧器中分别填充4孔/cm泡沫陶瓷或小球,研究其内部的燃烧温度和压力损失.结果表明,由相同材料制成但结构不同的多孔介质对燃烧器内的高温区域和压力损失有显著的影响.孔隙率较大的泡沫陶瓷适合于布置在燃烧区,而孔隙率较小的小球适合于布置在热交换区域.改进燃烧器结构,即在燃烧器的中间布置泡沫陶瓷,而在两端布置小球.对于当量比为0.1的甲烷与空气混合气,得到了更为宽广的高温区域和适度的压力降.  相似文献   

2.
多孔介质回热微燃烧器的扩散燃烧   总被引:1,自引:0,他引:1  
设计了多孔介质回热微燃烧器.进行了微燃烧器的扩散燃烧特性实验研究,得到了其燃烧效率、出口尾气温度、壁面温度和热损失率随燃烧热功率和过量空气系数的变化规律.实验发现,在较宽的操作范围内,微燃烧器具有较高的燃烧效率和出口尾气温度,而且随着燃烧功率和过量空气系数的增大,微燃烧器的壁面温度和热损失率反而减小.分析表明,采用回热夹层和多孔介质相向的进气方式,使得反应气体的流动方向与散热方向相反,有效回收了热量损失,提高了微燃烧器的热效率和出口尾气温度.所设计的多孔介质回热微燃烧器对开发微燃烧透平发电系统具有重要应用价值.  相似文献   

3.
曹海亮  张凯  张硕果  赵纪娜 《热能动力工程》2012,27(2):207-211,265,266
设计了多孔介质回热徽燃烧器,对微燃烧器内H2/Ak的预混燃烧特性进行了实验研究和数值模拟,实验结果表明,当过量空气系数1.0<α<3.0时,微燃烧器具有较高的燃烧效率,出口烟气温度和较低的燃烧热损失率,且燃烧热功率P越高,α越大,热损失率越小.当P=100 W时,其出口烟气温度最高可达到1 232 K,当α=3.0时,燃烧效率仍达到96.85%,而热损失率仅为14.87%.数值模拟结果表明,由于采用了回热夹层和多孔介质回热结构,有效地回收了热量损失,使得微燃烧器具有良好的热性能.证明设计的多孔介质回热微燃烧器是一种燃烧效率高、热损失率低的微燃烧器.  相似文献   

4.
分段多孔介质燃烧器二次进气燃烧排放研究   总被引:5,自引:0,他引:5  
对从中间段——燃烧管中上游段多孔泡沫陶瓷与下游段多孔泡沫陶瓷之间的一段间隙结构 ,引入二次空气的多孔介质燃烧器的 CO和 NO排放浓度进行了实验测试 ,较系统地研究了化学当量比、混合气流率和不同比率二次空气对天然气 /空气燃烧排放的影响。结果表明 ,加入适当比率的二次空气 ,不仅能够在相当宽的流速范围内使火焰很好地稳定在中间段 ,而且能得到低水平的 CO排放浓度 ,特别对较低当量比效果更为明显。同时 ,当火焰定位在中间段或近旁时 ,在化学当量比为 0 .4 5~ 0 .8范围内 NO的排放值能够低于 6× 10 - 6 ,达到了很理想的低排放水平  相似文献   

5.
在热循环型微燃烧器中充入甲烷/空气预混合气体进行燃烧数值模拟,探究该类型燃烧器在加入多孔介质条件下,对燃烧效率和预混气体预热效应的影响。文中采用数值模拟并使用甲烷/空气二阶反应,对比燃烧器在没有加入泡沫陶瓷多孔介质的条件下,在某次反应过程中对微燃烧器的影响,同时还发现多孔介质可以明显地使燃烧器提高燃烧效率,减小热损失,减少污染尾气,而且能更好地回收反应产生的热量并预热未反应气体。  相似文献   

6.
多孔泡沫陶瓷中预混火焰燃烧速率的试验研究   总被引:10,自引:3,他引:10  
本文对在多孔泡沫陶瓷中的甲烷/空气预混燃烧的燃速特性进行了实验研究,用一专用燃烧器对两种材质不同孔径尺寸的多孔介质分别测定了它们的预混燃烧速率。所得结果表明,其燃速与层流无多孔介质的自由火焰相比有显著的提高,并且受到材质和孔径大小的影响。同时,当量皆可燃稳定上下界限也有相应扩大。  相似文献   

7.
对微尺度下的氢气/空气预混气在多孔介质中进行预热燃烧时的燃烧特性进行了试验研究,在回热燃烧器中对不同ppi(每英寸长度上的孔洞数)的多孔介质进行对比试验,分别测试了氢气/空气预混气在预热下的燃烧效率与氢气流量、过量空气系数α以及多孔介质ppi之间的关系.结果表明,在多孔陶瓷的蓄热和混流作用下,燃烧速度和燃烧效率均得到了显著的提高,稳定燃烧界限也有一定的扩大.为进一步减小微尺度条件下的燃烧热量损失,提高燃烧效率,提供了试验依据.  相似文献   

8.
多孔介质中预混火焰猝熄及自稳定性研究   总被引:3,自引:0,他引:3  
分析了多孔介质中预混火焰的猝熄效应,试验测定了一系列工况下泡沫陶瓷的猝熄直径和自稳定范围,为多孔介质燃烧器的开发设计提供了依据。通过分析发现,猝熄直径受到多个参数的影响,包括:混合气体的流速u、预混气体的层流火焰传播速度SL、燃烧室空管Re、预混气体的导温系数a、当量比φ以及多孔介质固体温度Ts。通过对多孔介质中燃烧的自稳定性试验研究,发现了多孔介质燃烧器中火焰稳定极限(吹脱极限和回火极限)与多孔介质平均孔径和气流速度及燃烧当量比的关系。  相似文献   

9.
多孔介质发动机是一种新概念内燃机,它能实现均质和稳定燃烧.用改进的KIVA-3V对一种特定结构的多孔介质发动机的工作过程进行了模拟,并讨论了多孔介质初始温度、多孔介质结构特点对其燃烧与工作特性的影响.计算结果表明,在压缩比一定时,多孔介质初始温度是多孔介质发动机能否压燃着火的决定性因素;不同结构的泡沫陶瓷直接影响多孔介质内气固两相的换热,影响燃烧后期缸内温度和多孔介质固相的平均温度.  相似文献   

10.
通过一维数值模拟研究了预混气体在两层多孔介质燃烧器内的燃烧特性,着重研究两层多孔介质燃烧器中的超绝热燃烧和火焰的稳定区域。结果表明,预混气体在两层多孔介质内可以发生一定程度的超绝热燃烧,贫燃极限可以扩展到0.45。两层多孔介质能够在较宽的流速范围内将火焰稳定在它的交界面上。数值预测的最小和最大火焰传播速度与实验取得了相同的趋势,其火焰传播速度至少是自由空间中的3倍。  相似文献   

11.
Woody biomass in Finland and Sweden comprises mainly four wood species: spruce, pine, birch and aspen. To study the ash, which may cause problems for the combustion device, one tree of each species were cut down and prepared for comparisons with fuel samples. Well-defined samples of wood, bark and foliage were analyzed on 11 ash-forming elements: Si, Al, Fe, Ca, Mg, Mn, Na, K, P, S and Cl. The ash content in the wood tissues (0.2–0.7%) was low compared to the ash content in the bark tissues (1.9–6.4%) and the foliage (2.4–7.7%). The woods’ content of ash-forming elements was consequently low; the highest contents were of Ca (410–1340 ppm) and K (200–1310), followed by Mg (70–290), Mn (15–240) and P (0–350). Present in the wood was also Si (50–190), S (50–200) and Cl (30–110). The bark tissues showed much higher element contents; Ca (4800–19,100 ppm) and K (1600–6400) were the dominating elements, followed by Mg (210–2400), P (210–1200), Mn (110–1100) and S (310–750), but the Cl contents (40–330) were only moderately higher in the bark than in the wood. The young foliage (shoots and deciduous leaves) had the highest K (7100–25,000 ppm), P (1600–5300) and S (1100–2600) contents of all tissues, while the shoots of spruce had the highest Cl contents (820–1360) and its needles the highest Si content (5000–11,300). This paper presented a new approach in fuel characterization: the method excludes the presence of impurities, and focus on different categories of plant tissues. This made it possible to discuss the contents of ash element in a wide spectrum of fuel-types, which are of large importance for the energy production in Finland and Sweden.  相似文献   

12.
正1 ABSTRACT To reduce the effect of global warming on our climate,the levels of CO2emissions should be reduced.One way to do this is to increase the efficiency of electricity production from fossil fuels.This will in turn reduce the amount of CO2emissions for a given power output.Using US practice for efficiency calculations,then a move from a typical US plant running at 37%efficiency to a 760℃/38.5 MPa(1 400/5 580 psi)plant running at 48%efficiency would reduce CO2emissions by 170kg/MW.hr or 25%.  相似文献   

13.
The purpose of this paper is to illustrate the advantages of the direct surface-curvature distribution blade-design method, originally proposed by Korakianitis, for the leading-edge design of turbine blades, and by extension for other types of airfoil shapes. The leading edge shape is critical in the blade design process, and it is quite difficult to completely control with inverse, semi-inverse or other direct-design methods. The blade-design method is briefly reviewed, and then the effort is concentrated on smoothly blending the leading edge shape (circle or ellipse, etc.) with the main part of the blade surface, in a manner that avoids leading-edge flow-disturbance and flow-separation regions. Specifically in the leading edge region we return to the second-order (parabolic) construction line coupled with a revised smoothing equation between the leading-edge shape and the main part of the blade. The Hodson–Dominy blade has been used as an example to show the ability of this blade-design method to remove leading-edge separation bubbles in gas turbine blades and other airfoil shapes that have very sharp changes in curvature near the leading edge. An additional gas turbine blade example has been used to illustrate the ability of this method to design leading edge shapes that avoid leading-edge separation bubbles at off-design conditions. This gas turbine blade example has inlet flow angle 0°, outlet flow angle −64.3°, and tangential lift coefficient 1.045, in a region of parameters where the leading edge shape is critical for the overall blade performance. Computed results at incidences of −10°,   −5°,   +5°,   +10° are used to illustrate the complete removal of leading edge flow-disturbance regions, thus minimizing the possibility of leading-edge separation bubbles, while concurrently minimizing the stagnation pressure drop from inlet to outlet. These results using two difficult example cases of leading edge geometries illustrate the superiority and utility of this blade-design method when compared with other direct or inverse blade-design methods.  相似文献   

14.
A chemical reactor for the steam-gasification of carbonaceous particles (e.g. coal, coke) is considered for using concentrated solar radiation as the energy source of high-temperature process heat. A two-phase reactor model that couples radiative, convective, and conductive heat transfer to the chemical kinetics is applied to optimize the reactor geometrical configuration and operational parameters (feedstock's initial particle size, feeding rates, and solar power input) for maximum reaction extent and solar-to-chemical energy conversion efficiency of a 5 kW prototype reactor and its scale-up to 300 kW. For the 300 kW reactor, complete reaction extent is predicted for an initial feedstock particle size up to 35 μm at residence times of less than 10 s and peak temperatures of 1818 K, yielding high-quality syngas with a calorific content that has been solar-upgraded by 19% over that of the petcoke gasified.  相似文献   

15.
16.
汽轮机数字电液调节系统挂闸异常的技术完善   总被引:1,自引:0,他引:1  
分析了200MW汽轮机数字电液调节系统在运行中存在的挂闸异常问题,采取了相应的技术处理措施,且运行实践效果良好。  相似文献   

17.
为了提高喷油器电磁阀的响应速率,提出了一种基于CPLD(复杂可编程逻辑器件)应用于高压共轨ECU的数字升压模块。鉴于该升压电路结构参数多,其升压电压的恢复响应要求高等特征,基于Pspice建立了升压电路的仿真模型,研究了不同电路参数下升压模块的输出特性,全面优化了该升压模块的性能。结果显示,该升压模块的最大转换效率可以达90%以上。在柴油发动机上对ECU的试验表明,升压电压最大波动不超过10%,其恢复时间仅为1.3ms,功率管最大温升仅为41℃,满足整机运行范围内ECU的需求。  相似文献   

18.
As part of a pilot study investigating the role of microorganisms in the immobilisation of As, Sb, B, Tl and Hg, the inorganic geochemistry of seven different active sinter deposits and their contact fluids were characterised. A comprehensive series of sequential extractions for a suite of trace elements was carried out on siliceous sinter and a mixed silica-carbonate sinter. The extractions showed whether metals were loosely exchangeable or bound to carbonate, oxide, organic or crystalline fractions. Hyperthermophilic microbial communities associated with sinters deposited from high temperature (92–94°C) fluids at a variety of geothermal sources were investigated using SEM. The rapidity and style of silicification of the hyperthermophiles can be correlated with the dissolved silica content of the fluid. Although high concentrations of Hg and Tl were found associated with the organic fraction of the sinters, there was no evidence to suggest that any of the heavy metals were associated preferentially with the hyperthermophiles at the high temperature (92–94°C) ends of the terrestrial thermal spring ecosystems studied.  相似文献   

19.
The physical aspects of the activation energy, in higher and high temperatures, of the metal creep process were examined. The research results of creep-rupture in a uniaxial stress state and the criterion of creep-rupture in biaxial stress states, at two temperatures, are then presented. For these studies creep-rupture, taking case iron as an example the energy and pseudoenergy activation was determined. For complex stress states the criterion of creep-rupture was taken to be Sdobyrev's, i.e. σred = σ1 β + (1 − β)σi, where: σ1-maximal principal stress, σi-stress intensity, β-material constant (at variable temperature β = β(T)). The methods of assessment of the material ageing grade are given in percentages of ageing of new material in the following mechanical properties: 1) creep strength in uniaxial stress state, 2) activation energy in uniaxial stress state, 3) criterion creep strength in complex stress states, 4) activation pseudoenergy in complex stress states. The methods 1) and 3) are the relatively simplest because they result from experimental investigations only at nominal temperature of the structure work, however, for methods 2) and 4) it is necessary to perform the experimental investigations at least at two temperatures.  相似文献   

20.
Hydrogen was produced from primary sewage biosolids via mesophilic anaerobic fermentation in a continuously fed bioreactor. Prior to fermentation the sewage biosolids were heated to 70 °C for 1 h to inactivate methanogens and during fermentation a cellulose degrading enzyme was added to improve substrate availability. Hydraulic retention times (HRT) of 18, 24, 36 and 48 h were evaluated for the duration of hydrogen production. Without sparging a hydraulic retention time of 24 h resulted in the longest period of hydrogen production (3 days), during which a hydrogen yield of 21.9 L H2 kg−1 VS added to the bioreactor was achieved. Methods of preventing the decline of hydrogen production during continuous fermentation were evaluated. Of the techniques evaluated using nitrogen gas to sparge the bioreactor contents proved to be more effective than flushing just the headspace of the bioreactor. Sparging at 0.06 L L min−1 successfully prevented a decline in hydrogen production and resulted in a yield of 27.0  L H2 kg−1 VS added, over a period of greater than 12 days or 12 HRT. The use of sparging also delayed the build up of acetic acid in the bioreactor, suggesting that it serves to inhibit homoacetogenesis and thus maintain hydrogen production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号