共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
5.
增强纤维含量对汽车摩擦材料性能的影响 总被引:5,自引:0,他引:5
本文研究了不同体积百分数混杂纤维增强材料对汽车摩擦材料的摩擦、磨损性能及硬度、冲击强度和三点弯曲性能等指标的影响。结果表明,摩擦材料的冲击强度、三点弯曲断裂强度及硬度随纤维含量的增加而上升。纤维含量变化时,摩擦系数和磨损量变化较大,SEM 及EDX 分析表明,其机理与摩擦材料和对偶之间的转移膜的特性密切相关。在所研究的摩擦材料中,混杂纤维的含量以体积百分数10% 为最佳,此时材料有较高的摩擦系数和较低的磨损量,冲击强度、弯曲强度及硬度等性能指标都能达到使用要求。 相似文献
6.
纤维增强复合材料的力学性能主要受到纤维性能、树脂性能以及纤维与树脂间的复合材料界面性能影响。在实际应用中,纤维表面改性是增强纤维和基体之间结合力,拓展应用领域的关键。本文综述了国内外玄武岩纤维的几种改性工艺,总结了各种表面改性方法的作用机理及其改性效果,并简要介绍了玄武岩纤维的性质及应用。研究发现,玄武岩纤维经过改性后,其性能均有所改善,如表面活性提高、强度增大、界面黏结力增强等,这有利于其作为增强体制备各种性能优异的复合材料,从而应用于土木建筑、汽车船舶、石油化工、航空航天等领域。此外,本文最后还指出了玄武岩纤维改性领域目前存在的主要问题,并对未来该领域研究发展方向做出展望。 相似文献
7.
8.
通过对亚麻纤维进行改性处理,以酚醛树脂为基体,石墨、硫酸钡等为填料制备了不同含量亚麻纤维增强树脂基摩擦材料.利用电动洛氏硬度机、定速摩擦磨损试验机、场发射扫描电镜等设备,研究了亚麻纤维对摩擦材料的物理性能、力学性能和摩擦磨损性能的影响,观察了磨损后的表面形貌.研究结果表明:亚麻纤维能增加摩擦材料的冲击强度、稳定摩擦系数... 相似文献
9.
为了验证玄武岩纤维复合加固材料的性能,研究对该材料的抗拉强度、耐候性以及抗剪强度3大性能进行分析。采用对比分析的方式完成该材料与钢筋材料之间性能的对比,该材料具有质量轻、性能强、绝缘等优势,在强酸、强碱环境下仍可维持自身性能。利用玄武岩纤维复合加固材料制作混凝土构件,以此替代传统钢筋混凝土构件,可有效解决岩土工程中存在的钢筋腐蚀等问题。将该材料应用于岩土工程中,可与混凝土之间形成良好的粘接性,具有一定的可行性。 相似文献
10.
综述和分析了近年来国内外芳香族聚酰胺类纤维在摩擦材料的应用研究现状和发展趋势.表明发达国家在强制禁止摩擦材料中使用致癌物质石棉后,大大促进了非石棉增强摩擦材料的发展.其中芳香族聚酰胺类纤维增强材料以其优越的热学、力学以及摩擦性能,在摩擦材料领域得到广泛的应用.尤其对位芳纶浆粕在此领域应用最广研究最为深入. 相似文献
11.
介绍摩阻材料制品工况特点和材料的增强要求.讨论树脂基摩阻材料.中国应与世界接轨,逐步禁止和限制生产、应用石棉和石棉制品.玻璃纤维作为增强材料是更加实用的. 相似文献
12.
利用扫描电镜(SEM)对同步器齿环摩擦材料摩擦表面形貌进行表征;采用X-光光电子能谱(XPS)测定了该摩擦材料表面的元素组成及价态变化.结果表明,摩擦试验后摩擦材料表面密实程度增加,碳纤维主要起支承载荷作用,部分碳纤维表面被磨损;摩擦试验前表面存在C、O、N、Zn、Ba、Si元素,没有Mo、S、Cu、Fe元素.其中C为碳纤维的骨架,O为碳纤维表面上的-C-=O和-C-O-C-,N为碳纤维的PAN基材中的元素,Zn为原料硬脂酸锌中的元素,O1s:C1s=0.17.摩擦试验后表面存在C、O、N、Zn、Ba、Mo、S、Cu、Fe元素,但没有Si元素,其中Cu为CuO,Fe为羟基氧化铁(FeOOH).由于整个体系不均匀,C荷电不强,Ba荷电效应不均匀,Ba3d结合能(781.7eV)偏高,Mo3d和S2s的峰重叠,且S的结合能(170eV)偏高,故这些数据只作参考.O1s:C1s=0.25,该比值有所升高,说明摩擦表面氧化程度稍有增加. 相似文献
13.
14.
15.
以丁腈橡胶改性酚醛树脂为基体,芳纶/玻纤/钢/铜纤维混杂制备摩擦材料,在干摩擦条件下通过摩擦磨损试验机测试其摩擦学性能,并用扫描电镜(SEM)对摩擦材料的表面磨损形貌进行观察分析,研究不同混杂纤维成分对摩擦材料性能的影响。结果表明,滑动速率增大,材料的摩擦系数、磨损率均减小;实验载荷增大,材料的摩擦系数、磨损率呈现波动状态,未见明显变化趋势。摩擦过程中,含有四种混杂纤维的材料磨损形式为犁沟和塑性变形;未含有芳纶/玻纤混杂纤维的材料磨损形式主要为疲劳磨损;未含有钢/铜混杂纤维的材料磨损形式主要为黏着磨损。由此可见,添加混杂纤维可以有效提高材料的摩擦系数,降低磨损率,并且明显改善材料的摩擦学性能。 相似文献
16.
17.
18.
19.
20.
竹原纤维增强聚乳酸完全可降解材料的性能研究 总被引:1,自引:0,他引:1
以竹原纤维、聚乳酸为原料,采用非织造结合模压成型工艺制备了完全可降解材料。研究了材料降解随时间的变化规律及材料中增强纤维体积分数对材料拉伸、弯曲及降解性能的影响,采用扫描电子显微镜和傅立叶变换红外光谱仪研究了材料的降解机理。结果表明,当纤维体积分数为50%时,材料的纵横向拉伸强度和弯曲强度均达最大,分别为20.60、15.12MPa和27.47、21.27MPa;材料的降解速率随时间增加呈加快趋势,且纤维含量高的材料降解较快;降解首先发生在材料界面的缝隙处,随后产生了树脂开裂和纤维降解。 相似文献