首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
The influence of plastic deformation of the substrate on the tribological properties of diamond like carbon (DLC) films was investigated in DLC films-steel substrate system. The tribological properties of DLC films deposited on different hardness steel were evaluated by a ball on disk rotating-type friction tester at room temperature under different environments. In dry nitrogen, DLC films on soft steel exhibited excellent tribological properties, especially obvious under high load (such as 20 N and 50 N). However, DLC films on hard steel were worn out quickly at load of 20 N. Plastic deformation was observed on soft steel after tribological tests. The width and depth of plastic deformation track increased with increase of the experimental load. Super low friction and no measurable wear were kept in good condition even large plastic deformation under high load conditions in DLC films-soft steel system. In open air, DLC films on soft steel exhibited high coefficient of friction and DLC films on ball were worn out quickly. Plastic deformation was not observed on soft steel because the contact area increased and the thick hardened layer on contact surface were formed by DLC films and debris particles together on the steel substrate. The wear track on steel became deep and wide with increase of loads and DLC films were worn out. The experimental results showed that super low friction and high wear resistance of DLC films on soft steel can be attributed to the good adhesion and plastic deformation. Plastic deformation played an active role in the tribological properties of DLC films on soft steel in the present work.  相似文献   

2.
In this paper, a nano-scratch testing approach was used to measure and evaluate the abrasion wear resistance of high-chromium white cast irons in order to understand the wear mechanism in the interaction between the high-chromium white cast iron and the cBN cutting tool during the machining process. Scratch testing was performed on a nanoindentation instrument using a diamond indenter as the scratch tool. Linear multi-pass scratches in the same path were made on pre-worn surfaces of test materials. The correlation of the scratching resistance and tool wear measured from the machining is presented by the flank wear and maximum scratch depth. The appearance of the cutting edge on a cBN tool suggests that the abrasion wear is mainly related with a combined effect of the carbides and the matrix during machining the high-chromium white cast iron.  相似文献   

3.
In this study, CrZrN films were synthesized by unbalanced magnetron sputtering (UBM) under various N2 partial pressures and their characteristics such as crystalline structure, surface morphology, microstructure and mechanical properties as a function of the N2 partial pressures were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation, wear tests, and corrosion tests. Results revealed that, with increasing the N2 partial pressure from 0.05 to 0.21 Pa, the nitrogen content of the films increased from approximately 40.9 to 53.7 at%, the deposition rate decreased from approximately 100 to 59 nm/min and the surface roughness (Rms value) was increased from approximately 0.57 to 1.79 nm. The Cr37.3-Zr9.0-N53.7 film has the highest hardness, elastic modulus, and plastic deformation resistance of 36 GPa, 380 GPa, and 0.41, respectively. The Cr37.3-Zr9.0-N53.7 film also has the lowest friction coefficient and wear rate of 0.19 and 3.01 (10(-6)m3/Nm) at room temperature. In addition, the potentiodynamic test results showed the corrosion resistance of the CrZrN films became increased significantly and their corrosion current density (i(corr)), corrosion potentials (Ecorr) and corrosion rate decreased with increasing N2 partial pressure.  相似文献   

4.
Abstract

The plastic deformation of a high entropy alloy Al0.5CoCrFeNi was investigated by instrumented nanoindentation over a broad range of strain rates at room temperature. Results show that the creep behaviour depends on the strain rate remarkably. In situ scanning images showed a significant pile up around the indents, demonstrating that a highly localised plastic deformation occurred in the process of nanoindentation. Under different strain rates, contact stiffness and elastic modulus basically remain unchanged. However, the hardness decreases as indentation depth increases due to indentation size effect. For the same maximum load, serrations became less prominent as the loading rate of indentation increased. Similar serrations have been observed in the current alloy upon quasi-static compression.  相似文献   

5.
In this paper, the mechanical properties of electronic glass are tested using a combination of the Vickers indentation test and a multiple-loading nanoindentation test to obtain the elastic modulus, Poisson’s ratio and hardness values. The basic mechanical property parameters of the electronic glass and its stress–strain curve are found using atomic force microscopy analysis of the indentation morphology. The critical pressure and depth for crack initiation and the corresponding load and depth can be obtained during vertical loading on the electronic glass. When cracks extend to the surface, the results show that the electronic glass is isotropic. Several loading cycles causes a fatigue effect on the surface of the electronic glass, which decreases its elastic–plastic response. While the loadings are increasing, the elastic–plastic response rates are decreasing bur it rends stability finally. These results can provide a reference and guide for micro machining and surface microstructure machining of electronic glass.  相似文献   

6.
By using the two-dimensional quasicontinuum method, the nanoindentation process on a single crystal copper thin film with surface roughness is simulated to study the effect of surface morphology on the measurements of mechanical parameters. The nanohardness and elastic modulus are calculated according to Oliver-Pharr’s method. The obtained results show a good agreement with relevant theoretical and experimental results. It is found that surface roughness has a significant influence on both the nanohardness and elastic modulus of thin films determined from nanoindentation tests. The effect of such factors as the indenter size, indentation depth and surface morphology are also examined. To rule out the influence of surface morphology, the indentation depth should be much greater than the characteristic size of surface roughness and a reasonable indenter size should be chosen. This study is helpful for identifying the mechanical parameters of rough thin films by nanoindentation test and designing nanoindentation experiments.  相似文献   

7.
DLC膜在磨损、表面改性及力电耦合作用下损伤特性   总被引:1,自引:0,他引:1  
为评价超薄类金刚石(DLC)膜在使用过程中的安全状况,利用原子力显微镜(AFM)的多模式功能,从磨损、表面改性、力电失效3个方面对DLC膜进行了试验研究.研究结果表明:相同法向力作用在不同厚度薄膜的磨损深度不同;对DLC膜的形貌和电学特性进行比较发现,磨损区域导电性比未磨损区域强;在厚度为64.09nm薄膜施加正向25V电场作用下,当针尖作用在表面的压力超过一定临界压力(375nN)之后,薄膜发生击穿,形成凹坑。  相似文献   

8.
Au films of 8.9 nm thickness have been sputter deposited onto a (001) GaAs substrate at room temperature. An average grain size of 10 nm and no texture were obtained. Subsequent, nanoindentation tests were performed on the coated specimens and the mechanical response was compared to that of a bulk GaAs sample with the same crystallographic orientation. Furthermore, the loading–unloading curves were analysed in view of transmission electron microscopy plan-view images obtained on the deformed substrate–film specimens and compared to results previously reported in the literature for bulk sample. Constrained plasticity of the films was observed to occur for residual depth to thickness ratio below 0.67. Further, plastic deformation of the substrate happened on coated specimens at loads less than those required to plastically deform bare substrate.  相似文献   

9.
The effects of interface, contact hardness, deformation, and adhesion of Al/Ni multilayered films under nanoindentation were investigated using molecular dynamics (MD) simulations. The results show that the indentation force of the sphere indenter is the largest among nanoindentations using sphere, cone, Vickers, or Berkovich type indenters at the same penetration depth. Force increasing, relaxation and adhesion took place during loading, holding depth and unloading, respectively. The interface occurred along the {111} (110) slip systems and the maximum width of the glide bands was about 1 nm. The reaction force and plastic energy of the indented films are also discussed.  相似文献   

10.
The creep behaviour of polycrystal Ni thin films under the same maximum load (Pmax = 8000 microN) and different unloading periods (ranging from 1 to 250 s) has been investigated at room temperature using nanoindentation tests. A 'nose' has been observed in the unloading segment of the load-penetration depth curve when the holding time at peak load is short and/or the unloading rate is small, and when the peak load is sufficient high. When a 'nose' presents, the apparent unloading stiffness Su, defined as dP/dh, is negative, and the reduced modulus can no longer be calculated from the Oliver-Pharr method. Taking such uncertainties into account, a critical appraisal is proposed for ranking creep propensities exhibited during nanoindentation under specified conditions.  相似文献   

11.
Aluminium alloys reinforced by ceramic particles have been widely used in aerospace and automotive industries for their high stiffness and wear resistance. However, the machining of such materials is difficult and would usually cause excessive tool wear. The effect of ceramic particles on the cutting mechanisms is also unclear. The purpose of this study is to investigate the cutting mechanisms and the relationship between specific energy of scratching and depth of cut (size effect). The single-point scratch test was carried out on 6061 Al and its composites reinforced by Al2O3 and SiC ceramic particles using a pyramid indenter. The results indicated that the scratch process was composed of rubbing, ploughing, plastic cutting and reinforcement fracture. A simple model was proposed to interpret the apparent size effect. The effect of reinforcement on the specific energy was correlated to the ratio of volume fraction to particle radius. The paper found that for machining MMCs, a larger depth of cut should be used to maintain a lower machining energy, especially for those with a larger ratio of volume fraction to particle radius.  相似文献   

12.
利用脉冲激光沉积技术制备了不同Ag含量的VN/Ag复合薄膜,利用扫描电子显微镜、X射线衍射仪、纳米力学测试系统等设备袁征薄膜的组织结构、成分、表面形貌及力学性能,利用UMT-3摩擦试验机考察薄膜在室温至900℃下的摩擦学性能.结果表明,随着Ag含量的增多,薄膜的组织形貌变差,硬度及弹性模量降低.当Ag含量为16%(原子分数)时薄膜在试验温度范围内的摩擦学性能最佳.由于Ag在低温的润滑特性及高温摩擦化学反应生成了新的润滑相,如V2O5、V6O11、V6O13、Ag3VO4、AgVO3等,使得摩擦系数随温度的升高而逐渐降低,在900℃下取得最低值0.08,实现了宽温域内的连续润滑.  相似文献   

13.
The present paper reports on a recently developed rotary tool micro-ultrasonic drilling (RT-MUSD) process. The RT-MUSD process was utilized for machining of micro-holes in zirconia, silicon and glasswork materials. The effects of work material properties on the performance characteristics (material removal rate (MRR), depth of hole and hole overcut) of RT-MUSD process were investigated by varying the power rating, rotation speed, abrasive size and slurry concentration. Additionally, machined micro-holes and tool surface were analyzed considering microscopic images. The experimental results revealed that the MRR and depth of hole increased by increasing the power rating. An increase in rotation speed up to 300 rpm, abrasive size up to #1200 mesh and concentration up to 20% increased the MRR, depth of hole and decreased hole overcut. The maximum machining rate and hole overcut were observed during machining of silicon followed by glass and zirconia. The fracture toughness and hardness of the work material affected the MRR and tool wear, respectively. Pure brittle fracture mode of material removal was observed in all the work materials during RT-MUSD process. Eventually, the RT-MUSD process was optimized using desirability approach and a micro-hole of depth 4355 µm was achieved using optimal parameter settings.  相似文献   

14.
Nanoindentation simulations on flat and stepped surfaces are respectively investigated using the quasicontinuum method based on the embedded-atom method potential. Effect of surface step considering indenter size and step height is studied. Results show that the critical load for the first dislocation emission will be decreased with the increase of step height. However, the effect of surface step will be weakened if the indenter size continues to increase. Initial atomistic structures after dislocation nucleation and emission are discussed systematically. The initial dislocations are not quite identically nucleated under the stepped surface. Stress distribution analysis reveals that the shear stress in the slip planes close to the step is much larger than the shear stress in the slip planes far from the step for nanoindentation on the stepped surface. The multiscale simulation results are consistent with experimental results and analytic solutions. The conclusions about step effect considering indenter size and step height are helpful for understanding the microscopic mechanism of nanoindentation tests on thin films with surface step.  相似文献   

15.
Diamond-like carbon (DLC) films were deposited by a cathodic arc plasma evaporation (CAPD) process, using a mechanical shield filter combined with a magnetic filter with enhanced arc structure at substrate-bias voltage ranging from − 50 to − 300 V. The film characteristics were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM). The mechanical properties were investigated by using a nanoindentation tester, scratch test and ball on disc wear test. The Raman spectra of the films showed that the wavenumber ranging from 900 to 1800 cm− 1 could be deconvoluted into 1140 cm− 1, D band and G band. The bias caused a significant effect on the sp3 content which was increased with the decreasing of ID/IG ratio. The XPS spectra data of the films which were etched by H+ plasma indicated the sp3 content are higher than those of the as-deposited DLC films. This implied that there is a sp2-rich layer present on the surface of the as-deposited DLC films. The nanoindentation hardness increased as the maximum load increased. A 380 nm thick and well adhered DLC film was successfully deposited on WC-Co substrate above a Ti interlayer. The adhesion critical load of the DLC films was about 33 N. The results of the wear tests demonstrated that the friction coefficient of the DLC films was between 0.12 and 0.2.  相似文献   

16.
Li-Yu Lin 《Thin solid films》2009,517(5):1690-1266
The tribological behavior of zinc oxide (ZnO) films grown on glass and silicon (100) substrates by sol-gel method was investigated. Particularly, the as-coated films were post-annealed at different temperatures in air to investigate the effect of annealing temperature. Crystal structural and surface morphology of the films were measured by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD patterns and AFM images indicated that the crystallinity and grain size of the films were enhanced and increased, respectively, with temperature. The tribological behavior of films was evaluated by sliding the ZnO films against a Si3N4 ball under 0.5 gf normal load using a reciprocating pin-on-plate tribo-tester. The wear tracks of the films were measured by AFM to quantify the wear resistance of the films. The results showed that the wear resistance of the films could be improved by the annealing process. The wear resistance of the films generally increased with annealing temperature. Specifically, the wear resistance of the films was significantly improved when the annealing temperature was higher than 550° C. The increase in the wear resistance is attributed to the increase in hardness and modulus of the film with annealing temperature.  相似文献   

17.
一种钠钙硅酸盐玻璃的纳米压痕测试分析   总被引:1,自引:0,他引:1  
采用纳米压痕测试技术对一种钠钙硅酸盐玻璃进行微观力学性能的测试分析.测得加载-卸载过程载荷与压入深度曲线,发现被测玻璃的最大压深、残余深度和弹性回复量随最大加载力的增加而增大,但其相对弹性回复率系数基本稳定,平均值为58.2%.通过电子显微镜观察了不同最大载荷下的压痕形貌,发现压痕区域出现了边界沉陷现象.当最大加载力为1 000 mN左右时,三棱锥工具头测试的压痕区域出现了较明显的微裂纹;采用四棱锥工具头时出现微裂纹的最大加载力要小于该值,且裂纹取向均与金刚石工具头的棱角取向一致.利用非线性有限元软件MSC.Marc对纳米压痕过程进行了仿真分析,得到载荷与压入深度的仿真曲线,该曲线与试验结果基本相符;分析了载荷作用下材料内部的应力分布.利用Oliver-Pharr模型得到不同压入深度下被测玻璃的接触刚度值,该值随压入深度的增加而增大.  相似文献   

18.
为拓宽氮化物薄膜的应用范围、研究Ag元素的加入对CrSiN-Ag薄膜性能的影响,采用射频磁控溅射在单晶硅Si(100)和304不锈钢上制备了不同Ag含量的CrSiN-Ag薄膜,利用能谱仪(EDS)、X射线衍射仪(XRD)、纳米压痕仪、摩擦磨损仪和三维形貌仪等对薄膜的成分、微观结构、力学和不同温度下的摩擦磨损性能进行表征。结果表明:CrSiN-Ag薄膜呈面心立方(fcc)结构,Ag以晶态的形式存在于CrSiN薄膜中;随着Ag含量的增加,CrSiN-Ag薄膜的硬度先升高后逐渐降低,当Ag含量增加到6.84%(原子分数)时硬度最大,为26.55 GPa。室温时,CrSiN-Ag薄膜的摩擦系数随着Ag含量的增加而减小,磨损率随着Ag含量的增加先减小后增大;当Ag含量为6.84%时,CrSiN-Ag薄膜的高温摩擦系数随着温度的升高先增加后减小,磨损率随着温度的升高而增加。  相似文献   

19.
Two advanced machining methods such as thermally enhanced machining and ultrasonic-assisted machining are recently considered in many studies. In this article, a new hybrid milling process is presented by gathering the characteristics of these two methods. In order to determine the axial depth of cut and engagement in the process, three-dimensional thermal finite-element analysis is applied to determine the dimensions of softened materials. Finite-element modal analysis is used to determine the dimensions and clamping state of the workpiece while cutting area has the highest vibration amplitude. Full factorial experimental design is applied to investigate the effect of hybrid machining parameters on the surface roughness and tool wear. Tool flank wear was investigated under the condition of constant cutting speed during different period of times. Hybrid milling process with an amplitude of 6 µm and a temperature of 900°C creates a surface with 42% lower roughness in comparison to conventional milling in feed 0.08 mm/tooth. In a study of tool flank wear, the results show that application of TEUAM decreases flank wear at least 16% in comparison to all other processes.  相似文献   

20.
Concentrated heating of titanium by a focused laser beam in ambient atmosphere produces unique dielectric layers with characteristic colors dictated by film thickness and optical properties. A combination of microscopy and diffraction techniques employed to study the phase and microstructure of the oxide coatings showed that nanosecond-pulsed laser irradiation produces polycrystalline TiO films and underlying Ti6O interfacial layers. Mudflat cracking was prevalent in all coatings with most cracks extending through thickness to the metal substrate. Deformation and fracture behavior were probed by traditional nanoindentation methods with accompanying electron microscopy. These mixed titanium oxide coatings have moduli (~200 GPa) and hardnesses (~16 GPa) that are larger than the underlying metallic substrates. Fracture energies and residual stress have also been determined from pre-cracked films; fracture toughness and residual stress tend to decrease with decreasing laser fluence. Electrical contact resistance, measured with conductive nanoindentation, indicates a correlation between laser exposure, current–voltage behavior at constant load, and indentation response. Film conductance increases with decreasing laser fluence, likely due to the presence of defects, which act as a conduction path. Combining techniques provide a unique approach for defining electromechanical behavior and the resulting performance of the films in conditions that cause wear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号