首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SiC coatings for carbon/carbon (C/C) composites have been prepared by the combination process of vacuum plasma spraying technology and heat treatment. The SiC coatings were formed by the reaction of C/C substrates with as-sprayed silicon coatings deposited by vacuum plasma spraying. The preparation temperature and the thickness of original silicon coatings have great influence on the microstructure and the thickness of the synthesized SiC coatings. The results indicated that a continuous and dense SiC coating has been produced on the surface of C/C substrates. The SiC coatings prepared at 2073 K with the silicon coatings of 230 μm thickness, exhibited a low mass loss of 2.56% in the plasma jet with temperature about 2473 K and duration of 420 s in atmosphere. The present results implied that vacuum plasma spraying technology combined with heat treatment was an acceptable method for synthesis of protective SiC coatings for C/C composites.  相似文献   

2.
In this paper, two plasma spraying technologies: solution plasma spraying (SolPS) and suspension plasma spraying (SPS) were used to produce nano-structured solid oxide fuel cells (SOFCs) electrolytes. Both plasma spraying processes were optimized in order to achieve the thin gas-tight electrolytes. The comparison of the two plasma spraying processes is based on electrolyte phase, microstructure, morphology, as well as on plasma deposition rate. The results show that nano-structured thin electrolytes (~5 μm thick) have been successfully SPS deposited on porous anodes with a high deposition rate. Compared to the electrolytes produced by SolPS, the SPS-deposited electrolyte layer is much denser. During the SPS process, fine droplets of 0.5-1 μm in diameter impact on the surface of the coating and penetrate into the pores of the anode. As the stresses are reduced on the resulting 0.5-2 μm splats, there is no apparent microcracks network on the splats, this resulting in highly gas-tight coatings. It is demonstrated that the SPS process is beneficial for the improvement of the performance of the films to be used as SOFC electrolytes.  相似文献   

3.
In this study, surfaces of copper plates were coated with a thick alumina layer by the plasma spray coating to fabricate a composite with a dielectric performance that made them suitable as substrates in electronic devices with high thermal dissipation. The performance of alumina dielectric layer fabricated by the plasma spray coating and traditional screen-printing process was compared, respectively. Effects of the spraying parameters and size of alumina particles on the microstructure, thickness, and the surface roughness of the coated layer were explored. In addition, the thermal resistance perpendicular to the interface of copper and alumina and the breakdown voltage across the alumina layer of the composite were also investigated. Experimental results indicated that alumina particles with 5-22 μm in diameter tended to form a thicker layer with a poorer surface roughness than that of the particles with 22-45 μm in diameter. The thermal resistance increased with the surface roughness of the alumina layer, and the breakdown voltage was affected by the ambient moisture, the microstructure and the thickness of the layer. The optimal parameters for plasma spray coating were an alumina powder of particles size between 22 and 45 μm, a plasma power of 40 kW, a spraying velocity of 750 m/s, an argon flow rate of 45 L/min, a spraying distance of 140 mm, and a spraying angle of 90°. It can be concluded that an alumina layer thickness of 20 μm provided a low surface roughness, low thermal resistance, and highly reliable breakdown voltage (38 V/μm).  相似文献   

4.
Atmospheric pressure arc velocity and erosion measurements were performed on cold-sprayed cathodes in a continuously running arc system. Ultrahigh purity (99.99% pure) argon was used as plasma forming gas. An external magnetic field of 0.10 T was used to rotate the arc, which was operated at a constant power of 6 kW (40 V). Cathodes having microstructures with mean grain sizes, ranging from 1.12 to 3.06 μm, were produced using cold spraying (CS) and annealing methods. CS cathodes were tested in their as-sprayed state and annealed state. Annealed CS coatings with near equi-axed grains of 2.29 μm average size gave 60% higher steady-state arc velocities and up to 50% lower erosion rates than massive copper cathodes having 20-23 μm average grain size. An effect of cathode microstructure on arc velocity and on arc erosion rates was observed.  相似文献   

5.
The mechanical properties of a MCrAlY coating significantly influence the initiation of cracks in the superalloy substrate under thermomechanical-fatigue conditions. Previous studies have developed a convenient method for evaluating the mechanical properties of sprayed coatings by lateral compression of a circular tube coating. This method does not need chucking, and manufacturing the free-standing coating is quite straightforward. In this study, the mechanical properties of the free-standing CoNiCrAlY coatings prepared using low-pressure plasma spraying (LPPS), high-velocity oxyfuel (HVOF) spraying, and atmospheric plasma spraying (APS) were systematically measured with the lateral compression method at room temperature through to 920 °C. The effect of postspray thermal treatments, in vacuum and in air, on the mechanical properties was investigated in the 400 to 1100 °C temperature range. It was found that high-temperature thermal treatment in air was effective in increasing the bending strength and Young’s modulus. It was especially effective on the APS coatings, which were produced using powders with average size 60 μm, and on HVOF coating, whose bending strengths increased by approximately three times. On the contrary, the enhancement in the LPPS and APS coatings produced with powders 21 μm in size was found to be approximately 1.6 times.  相似文献   

6.
The study aimed at optimizing the suspension plasma spraying of TiO2 coatings obtained using different suspensions of fine rutile particles in water solution onto aluminum substrates. The experiments of spraying were designed using a 23 full factorial plan. The plan enabled to find the effects of three principal parameters, i.e. electric power input to plasma, spray distance, and suspension feed rate onto microstructure of coatings, content of anatase phase and size of anatase crystals in the coatings. The microstructure of deposits was observed with scanning electron microscope (SEM) and optical microscope and their composition was characterized using energy dispersive spectrometry (EDS). The observations were made on the coatings surface and their cross-sections. The latter made it possible to determine the coatings thicknesses to be in the range from 8 to 33 μm.
Lech PawlowskiEmail:
  相似文献   

7.
Titanium carbide-based coatings have been considered for use in sliding wear resistance applications. Carbides embedded in a metal matrix would improve wear properties, providing a noncontinuous ceramic surface. TiC-Fe coatings obtained by plasma spraying of spray-dried TiC-Fe composite powders containing large and angular TiC particles are not expected to be as resistant as those containing TiC particles formed upon spraying. Coatings containing 60 vol% TiC dispersed in a steel matrix deposited by plasma spraying reactive micropellets, sintered reactive micropellets, and spray-dried TiC-Fe composite powders are compared. The sliding wear resistance of these coatings against steel was measured following the test procedure recommended by the Versailles Advanced Materials and Standards (VAMAS) program, and the inherent surface porosity was evaluated by image analysis. Results show that, after a 1-km sliding distance, TiC-Fe coatings obtained after spraying sintered reactive powders exhibit scar ring three times less deep than sprayed coatings using spray-dried TiC-Fe composite powders. For all coatings considered, porosity is detrimental to wear performance, because it generally lowers the coating strength and provides cavities that favor the adhesion of metal. However, porosity can have a beneficial effect by entrapping debris, thus reducing friction. The good wear behavior of TiC-Fe coatings manufactured by plasma spraying of sintered reactive powders is related to their low coefficient of friction against steel. This is due to the microstructure of these coatings, which consists of 0.3 to 1 μm TiC rounded particles embedded in a steel matrix. Presented at the International Conference on Metallurgical Coatings and Thin Films, ICMCTF-92, Apr 6–10, 1992, San Diego.  相似文献   

8.
High hardness alumina coatings were formed at atmospheric pressure by gas tunnel plasma spraying, and the characteristics of these coatings were investigated. The hardness on the cross section of the alumina coating at a short spraying distance was more than 1300 HV, and the thickness of the hard layer increased with an increase of power input. The microstructure of the alumina coating was investigated by microscopy and x-ray diffraction (XRD) methods. It was ascertained that the cell size was small (∼10 μn), and α-alumina was dominant in the high hardness layer of the coating. Finally, the effect of plasma energy was estimated from these results.  相似文献   

9.
In this study, high velocity oxy-fuel (HVOF) and vacuum plasma spraying (VPS) coatings were sprayed using a Praxair (CO-210-24) CoNiCrAlY powder. Free-standing coatings underwent vacuum annealing at different temperatures for times of up to 840 h. Feedstock powder, and as-sprayed and annealed coatings, were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). The hardness and Young’s modulus of the as-sprayed and the annealed HVOF and VPS coatings were measured, including the determination of Young’s moduli of the individual phases via nanoindentation and measurements of Young’s moduli of coatings at temperatures up to 500 °C. The Eshelby inclusion model was employed to investigate the effect of microstructure on the coatings’ mechanical properties. The sensitivity of the mechanical properties to microstructural details was confirmed. Young’s modulus was constant up to ~200 °C, and then decreased with increasing measurement temperature. The annealing process increased Young’s modulus because of a combination of decreased porosity and β volume fraction. Oxide stringers in the HVOF coating maintained its higher hardness than the VPS coating, even after annealing.  相似文献   

10.
Thermal spraying is widely employed to deposit hydroxyapatite (HA) and HA-based biocomposites on hip and dental implants. For thick HA coatings (>150 μm), problems are generally associated with the build-up of residual stresses and lack of control of coating crystallinity. HA/polymer composite coatings are especially interesting to improve the pure HA coatings' mechanical properties. For instance, the polymer may help in releasing the residual stresses in the thick HA coatings. In addition, the selection of a bioresorbable polymer may enhance the coatings' biological behavior. However, there are major challenges associated with spraying ceramic and polymeric materials together because of their very different thermal properties. In this study, pure HA and HA/poly-ε-caprolactone (PCL) thick coatings were deposited without significant thermal degradation by low-energy plasma spraying (LEPS). PCL has never been processed by thermal spraying, and its processing is a major achievement of this study. The influence of selected process parameters on microstructure, composition, and mechanical properties of HA and HA/PCL coatings was studied using statistical design of experiments (DOE). The HA deposition rate was significantly increased by the addition of PCL. The average porosity of biocomposite coatings was slightly increased, while retaining or even improving in some cases their fracture toughness and microhardness. Surface roughness of biocomposites was enhanced compared with HA pure coatings. Cell culture experiments showed that murine osteoblast-like cells attach and proliferate well on HA/PCL biocomposite deposits.  相似文献   

11.
Gas atomized Al63Cu25Fe12 powders of varying size fractions were plasma sprayed onto hot (~600 °C) and cool (~25 °C) substrates using Mach I and subsonic plasma gun configurations. The chemical composition and phase contents of coatings were determined. Furthermore, coatings were annealed in vacuum at 700 °C for 2 h to observe phase changes. It was found that finer particles (e.g., <25 μm) tend to vaporize Al during spraying, which shifts the coating composition away from the quasicrystalline (ψ) single-phase region in the Al-Cu-Fe phase diagram. Coatings deposited on hot substrates were denser, richer in theψ phase, and harder than the corresponding coatings deposited onto cool substrates.  相似文献   

12.
This paper describes the formation process of nanostructured alumina coatings and the injection system obtained by suspension plasma spraying (SPS), an alternative to the atmospheric plasma spraying technique in which the material feedstock is a suspension of the nanopowder to be sprayed. The nanoscale alumina powders (d ≈ 20 nm) were dispersed in distilled water or ethanol and injected by a peristaltic pump into plasma under atmospheric conditions. Optical microscopy (OM), scanning electron microscopy (SEM), and x-ray diffraction (XRD) analyses were performed to study the microstructure of the nanostructured alumina coatings. The results showed that the nanoscale alumina powders in suspension were very easily adsorbed at the inner surface of injection, which caused the needle to jam. The rotation of the pump had a great effect on the suspension injection in the plasma. The very small resistance of the thin plasma boundary layer near the substrate can drastically decrease the impacting velocity of nanosize droplets. The concentration of suspension also has a significant influence on the distribution of the size of the droplet, the enthalpy needed for spraying suspension, and the roughness of the coating surface. The phase structures of alumina suspension coatings strongly depend on the plasma spraying distance. A significant nanostructured fine alumina coating was obtained in some areas when ethanol was used as a solvent. The microstructures of the coating were observed as a function of the solvent and the spraying parameters.  相似文献   

13.
To testify to the advantage of large ceramic powder spraying, numerical simulations and experimental studies on the behavior of large yttria-stabilized zirconia (YSZ) powder in a high-power hybrid plasma spraying process have been carried out. Numeric predictions and experimental results showed that, with the high radio frequency (RF) input power of 100 kW, the most refractory YSZ powder with particle sizes as large as 88 μm could be fully melted and well-flattened splats could be formed. A large degree of flattening (ξ) of 4.7 has been achieved. The improved adhesive strength between the large splat and the substrate was confirmed based on the measurement of the crack density inside of the splats. A thick YSZ coating >300 μm was successfully deposited on a large CoNiCrAlY-coated Inconel substrate (50×50×4 mm in size). The ultradense microstructure without clear boundaries between the splats and the clean and crack-free interface between the top-coat and the bond-coat also indicate the good adhesion. These results showed that highpower hybrid plasma spraying of large ceramic powder is a very promising process for deposition of highquality coatings, especially in the application of thermal barrier coatings (TBCs).  相似文献   

14.
In this study possibilities are presented how a laser plasma CVD process (LaPlas) can be modified in order to generate nanocrystalline diamonds. With the LaPlas process it is possible to deposit diamond coatings on surfaces. It can be shown that the crystallite size can be modified towards smaller grains. The crystallite size was reduced below 1 μm. An applied cutting force test of some coatings shows the resulting performance.  相似文献   

15.
The microstructure of Ti-6Al-4V alloy manufactured by vacuum plasma spraying consists of individual lamellae, inter-lamellae boundaries, and porosity. Mechanical properties of the as-sprayed structure depend mainly upon the solidification behavior and resultant microstructure and morphology of the individual splats and cohesion between splats. Using a three-dimensional numerical model, the cooling rate and solidification behavior of a single Ti-6Al-4V droplet (50 μm) impacting on a titanium substrate under vacuum plasma spray conditions were investigated. Results were verified with experimental observations in single splats and as-sprayed microstructures obtained by vacuum plasma sprayed form of Ti-6Al-4V alloy. The average cooling rate of a single splat obtained from the numerical simulation was on the order of 108 °C/s and the solidification front velocity was approximately 63 cm/s which is in the range of the rapid solidification. The thickness of the splat was calculated to be around 3 μm and the deposition efficiency was approximately 70%. These results illustrated good agreements with those obtained from experiments.  相似文献   

16.
Al2O3-13%TiO2 coatings were deposited on stainless steel substrates from conventional and nanostructured powders using atmospheric plasma spraying (APS). A complete characterization of the feedstock confirmed its nanostructured nature. Coating microstructures and phase compositions were characterized using SEM, TEM, and XRD techniques. The microstructure comprised two clearly differentiated regions. One region, completely fused, consisted mainly of nanometer-sized grains of γ-Al2O3 with dissolved Ti+4. The other region, partly fused, retained the microstructure of the starting powder and was principally made up of submicrometer-sized grains of α-Al2O3, as confirmed by TEM. Coating microhardness as well as tribological behavior were determined. Vickers microhardness values of conventional coatings were in average slightly lower than the values for nanostructured coating. The wear resistance of conventional coatings was shown to be lower than that of nanostructured coatings as a consequence of Ti segregation. A correlation between the final properties, the coating microstructure, and the feedstock characteristics is given.  相似文献   

17.
The effects of the initial α-phase content on the microstructure and flexural strength of macroporous silicon carbide (SiC) ceramics were investigated. When β powder or a mixture of α/β powders containing small (≤3%) amounts of α powder were used, the grains showed a platelet-shape. In contrast, the grains had an equiaxed-shape when α powder or a mixture of α/β powders containing large (≥50%) amounts of α powder was used. The flexural strength increased with increasing α-SiC content in the starting composition, whereas the porosity decreased with increasing α-SiC content. The strength of the macroporous SiC ceramics was affected mostly by the porosity when the grain size was smaller than 10 μm, whereas the strength was controlled by pore size and grain size when the microstructure consisted of large (>10 μm) platelet grains.  相似文献   

18.
The deposition of cold-sprayed titanium on various substrates is studied in this work. A rather coarse powder of titanium (−70 + 45 μm) was sprayed under uniform spraying conditions using a cold spray system onto five different substrates: two aluminum-based alloys (AISI 1050-H16 and AISI 2017-T4), copper, stainless steel AISI 304L, and Ti-6Al-4V. All the spraying experiments were carried out using alternatively nitrogen (N2) or helium (He) as the process gas. Thick coatings were formed on the various substrates, with the exception of the AISI 2017 substrate. When N2 was used as the process gas, only a few particles remained adhering to the AISI 2017. The thick pre-existing superficial oxide layer on AISI 2017, which was detected by Electron MicroProbe Analysis (EPMA), appeared to prevent adhesion of cold-sprayed titanium particles. The interaction of the sprayed particles with the various substrates was also studied by means of numerical simulations to better understand the adhesion mechanisms. The microstructure and the characteristics of the coatings were investigated. Deposition efficiency and coating density were found both to be strongly improved by spraying helium as the process gas.  相似文献   

19.
Tungsten (W) coatings have been prepared via air (APS) and vacuum plasma spraying (VPS) technologies, respectively. The microstructures and chemical compositions of the coatings were comparatively studied; meanwhile, the mechanical and thermal properties were evaluated. The results obtained showed that oxide content in the VPS-W coating was apparently lower than that of the APS-W coating because of the different surrounding atmosphere, which influenced the mechanical and thermal properties of the coatings directly. Similar microstructures were observed for the VPS-W and the APS-W coating, but the VPS-W coating was much denser. The bonding strength of the VPS-W coating was much higher than that of the APS-W coating. Thermal conductivity of the VPS-W coating was 59.3 W/m · K at room temperature while the APS-W coating was 32.2 W/m  K. Thermal loading experiments of electron beam showed that the VPS-W coating could withstand the heat load of 10.75 MW/m2, while the APS-W coating formed serious cracks on its surface at the load of 7.5 MW/m2.  相似文献   

20.
In recent decades, very low pressure plasma spraying (VLPPS) technology (less than 10 mbar), as a next-generation coating process, has been extensively studied, because it can fully evaporate the materials to deposit dense, thin, and columnar grain coatings. This research aims at applying VLPPS with low-energy plasma source to melt or evaporate ceramic materials to develop high-quality thermal barrier coatings. Thin and homogeneous yttria-stabilized zirconia coatings were deposited successfully on a stainless steel substrate using low-power plasma spraying torch F100 (23 kW maximal) under very low pressure (1 mbar). The optical emission spectroscopy was used to analyze the properties of the plasma jet. The phase composition and the microstructure of the coatings were characterized by x-ray diffraction and scanning electron microscopy. The results showed that the YSZ powder was fully melted and partially evaporated, and the coatings had a hybrid microstructure that was combined with the condensation of the YSZ vapor and the melted particles. In addition, the porosity and microhardness of the coatings were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号