首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Patients with unilateral neglect following right hemisphere damage may have difficulty in moving towards contralesional targets. To test the hypothesis that this impairment arises from competing motor programs triggered by irrelevant ipsilesional stimuli, we examined 16 right hemisphere patients, eight with left visual neglect and eight without, in addition to eight healthy control subjects. In experiment 1 subjects performed sequences of movements using their right hand to targets on the contralesional or ipsilesional side of the responding limb. The locations of successive targets in each sequence were either predictable or unpredictable. In separate blocks of trials, targets appeared either alone or with a simultaneous distractor located at the immediately preceding target location. Neglect patients were significantly slower to execute movements to contralesional targets, but only for unpredictable movements and in the presence of a concurrent ipsilesional distractor. In contrast, healthy controls and right hemisphere patients without neglect showed no directional asymmetries of movement execution. In experiment 2 subjects were required to interrupt a predictable, reciprocating sequence of leftward and rightward movements in order to move to an occasional, unpredictable target that occurred either in the direction opposite to that expected, or in the same direction but twice the extent. Neglect patients were significantly slower in reprogramming the direction and extent of movements towards contralesional versus ipsilesional targets, and they also made significantly more errors when executing such movements. Right hemisphere patients without neglect showed a similar bias in reprogramming direction (but not extent) for contralesional targets, whereas healthy controls showed no directional asymmetry in either condition. On the basis of these findings we propose that neglect involves a competitive bias in favour of motor programs for actions directed towards ipsilesional versus contralesional events. We suggest that programming errors and increased latencies for contralesional movements arise because the damaged right hemisphere can no longer effectively inhibit the release of inappropriate motor programs towards ipsilesional events.  相似文献   

2.
The movement-related cortical electroencephalographic potential was recorded from scalp electrodes in 8 patients with idiopathic Parkinson's disease studied at least 12 hours after withdrawal of their normal drug therapy, and compared with the results from a group of 8 age-matched control subjects. Two types of self-paced voluntary arm movements were examined: repetitive forward movement of a joystick, and random-choice movements of the same joystick in which subjects had to choose freely the direction in which they were to move the stick (forward, backward, left, or right). In normal subjects, the movement-related cortical potential was larger prior to random-choice movements, whereas in the patients, the amplitude was the same in both tasks. The implication is that processes involved in self-selection of movement are abnormal in Parkinson's disease. This may contribute to the difficulty that patients have in initiating voluntary movement in the absence of any external cues.  相似文献   

3.
Normal subjects traced sagittal lines on a graphic tablet using a stylus held in their right hand. The hand was hidden by a mirror in which they saw the lines projected from a computer screen. In normal trials, the line seen in the mirror exactly corresponded to the traced line. In perturbed trials, a bias was introduced by the computer, so that the line appeared to deviate in one direction (right or left) by a variable angle (2, 5, 7 or 10 degrees). Subjects consistently displaced their hand in the opposite direction for producing a visually sagittal line. After each trial, they were asked in which direction they thought their hand had moved. In perturbed trials, they grossly underestimated the hand deviation. In addition, a post-hoc analysis revealed that one group of subjects misperceived the direction of their hand movement in the direction opposite to the perturbation (Group 1, including 9 Ss), whereas the other group gave responses in the correct direction (Group 2, including 4 Ss). In a second session using the same experimental paradigm, a motor response was asked for: subjects had to indicate the perceived direction of their hand during each trial by drawing a line with their eyes closed. Again, responses indicated a poor conscious monitoring of motor performance. These results suggest that normal subjects are not aware of signals generated by their own movements.  相似文献   

4.
Descending and reflex pathways usually converge on common interneurons and motoneurons. This implies that active movements may result from changes in reflex parameters produced by control signals conveyed by descending systems. Specifically, according to the lambda-model, a fast change in limb position is produced by a rapid change in the threshold of the stretch reflex. Consequently, external perturbations may be ineffective in eliciting additional reflex modifications of electromyographic (EMG) patterns unless the perturbations are relatively strong. In this way, the model accounts for the relatively weak effects of perturbations on the initial agonist EMG burst (Ag1) usually observed in fast movements. On the other hand, the same model permits robust reflex modifications of the timing and shape of the Ag1 in response to strong perturbations even in the fastest movements. To test the model, we verified the suggestion that the onset time of the Ag1, even in the fastest movements, depends on proprioceptive feedback in a manner consistent with a stretch reflex. In control trials, subjects (n = 6) made fast unopposed elbow flexion movements of approximately 60 degrees (peak velocity 500-700 degrees/s) in response to an auditory signal. In random test trials, a brief (50 ms) torque of 8-15 Nm either assisting or opposing the movement was applied 50 ms after this signal. Subjects had no visual feedback and were instructed not to correct arm deflections in case of perturbations. In all subjects, the onset time of the Ag1 depended on the direction of perturbation: it was 25-60 ms less in opposing compared with assisting load conditions. Assisting torques caused, at a short latency of 37 ms, an additional antagonist EMG burst preceding the Ag1. The direction-dependent effects of the perturbation persisted when cutaneous feedback was suppressed. It was concluded that the direction-dependent changes in the onset time and duration of the Ag1 as well as the antagonist activation preceding the Ag1 resulted from stretch reflex activity elicited by the perturbations rather than from a change in the control strategy or cutaneous reflexes. The results support the hypothesis on the hierarchical scheme of sensorimotor integration in which EMG patterns and movement emerge from the modification of the thresholds and other parameters of proprioceptive reflexes by control systems.  相似文献   

5.
The effects of globus pallidus (GP) lesion were examined in two monkeys trained to perform a visually guided pointing movement in simple and choice reaction time tasks involving small and large amplitude movements. The reaction time (RT) and the movement time (MT) were measured. The Y-axis error (EY) was also analyzed in order to assess the movement accuracy. Unilateral GP lesion was made by locally injecting an excitatory amino acid, quisqualic acid. GP lesion led to little change in the RTs (simple and choice RTs) and in the EY, whereas a large increase in the MT occurred. The MT impairments seem to have been correlated with the movement amplitude, since they were larger in the case of small-amplitude than large-amplitude movements. These results suggest that the GP may be involved in the control of small-amplitude rather than large-amplitude movements. As various studies have shown that proprioceptive cues are more strongly involved in the control of discrete than large-amplitude movements, the MT deficit, i.e., the bradykinesia observed here, may reflect a defective integration of proprioceptive information occurring after GP lesion.  相似文献   

6.
This research examined behavioral (i.e. movement time) and neuromuscular (EMG) characteristics of unilateral and bilateral aiming movements of children with normal motor development and children with developmental coordination disorders (DCD). Two age groups of children were studied: 6 to 7, and 9 to 10 year olds. Bilateral aiming movements involved moving the two hands to targets of either (1) the same amplitude--symmetrical bilateral movements, or (2) different amplitudes--asymmetrical bilateral movements. Unilateral aiming movements involved moving one hand to either near or far targets associated with that hand. In general, unilateral and bilateral movement times were slower in younger than older children, and in children with DCD than children with normal motor development. Our neuromuscular data suggest that the faster movement times that typically accompany increasing age in children may be the result of a change in the capacity to initiate antagonist muscle contractions. The prolonged burst of agonist activity and delayed onset of antagonist activity observed in children with DCD may contribute to their inability to produce fast, accurate unilateral movements. On both symmetrical and asymmetrical bilateral aiming movements, children with DCD had more performance errors and greater temporal inconsistencies between neuromuscular (EMG) parameters and behavioral (movement time) parameters than children with normal motor development. These new neuromuscular data suggest that there are important differences in the way the motor control systems of children with and without DCD organize bilateral aiming responses.  相似文献   

7.
In Experiment 1, subjects were supplied with prior information about 1, 2 or all dimensions (the active hand, direction, and extent) of a pointing movement. RTs showed that dimensional effects were found in highly compatible stimulus-response conditions, dimensions specification times were underadditive, and the difference in RT between dimension values when that dimension remained to be specified, disappeared when the dimension was precued. In Experiment 2, subjects were required to name target color after a set of colored targets was presented as a precue, and dimensional effects disappeared. In Experiment 3, a target was presented as a prime, followed by presentation of either the same or a different target. As compared to Experiment 1, dimensional effects were amplified. In conclusion, when two or more movement dimensions have to be specified simultaneously, dimension values are independently selected, then integrated in a compound programming operation. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
This study shows that the discharge of many motor cortical cells is strongly influenced by attributes of movement related to the geometry and mechanics of the arm and not only by spatial attributes of the hand trajectory. The activity of 619 directionally tuned cells was recorded from the motor cortex of two monkeys during reaching movements with the use of similar hand paths but two different arm orientations, in the natural parasagittal plane and abducted into the horizontal plane. Nearly all cells (588 of 619, 95%) showed statistically significant changes in activity between the two arm orientations [analysis of variance (ANOVA). P < 0.01]. A majority of cells showed a significant change in their overall level of activity (ANOVA, main effect of task, P < 0.01) between arm orientations before, during, and after movement. Many cells (433 of 619, 70%) also showed a significant change in the relation of their discharge with movement direction (ANOVA, task x direction interaction term, P < 0.01) during movement, including changes in the dynamic range of discharge with movement and changes in the directional preference of cells that were directionally tuned in both arm orientations. Similar effects were seen for the discharge of cells while the monkey maintained constant arm postures over the different peripheral targets with the use of different arm orientations. Repeated data files from the same cell with the use of the same arm orientation showed only small changes in the level of discharge or in directional tuning, suggesting that changes in cell discharge between arm orientations cannot be explained by random temporal variations in cell activity. The distribution of movement-related preferred directions of the whole sample differed between arm orientations, and also differed strongly between cells receiving passive input predominantly from the shoulder or elbow. The electromyographic activity of most prime mover muscles at the shoulder and elbow was also strongly affected by arm orientation, resulting in changes in overall level of activity and/or directional tuning that often resembled those of the proximal arm-related motor cortical cells. A mathematical model that represented movements in terms of movement direction centered on the hand could not account for any of the arm-orientation-related response changes seen in this task, whereas models in intrinsic parameter spaces of joint kinematics and joint torques predicted many of the effects.  相似文献   

9.
The effects of aging on response time (RT) are examined in 2 lexical-decision experiments with young and older subjects (age 60-75). The results show that the older subjects were slower than the young subjects, but more accurate. R. Ratcliff s (1978) diffusion model provided a good account of RTs, their distributions, and response accuracy. The fits show an 80-100-ms slowing of the nondecision components of RT for older subjects relative to young subjects and more conservative decision criterion settings for older subjects than for young subjects. The rates of accumulation of evidence were not significantly different for older compared with young subjects (less than 2% and 5% higher for older subjects relative to young subjects in the 2 experiments). (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
Drawing arm movements in four different directions: a) upward vertical (0 degree), b) upward oblique (45 degrees), c) downward vertical (180 degrees) and d) downward oblique (135 degrees), and at two different speeds, normal and fast, were executed by eight subjects. Movements of the arm were recorded using an optoelectronic (2 TV, 100 Hz) system which allowed the computer reconstruction of joint motion. Analyses focused upon pen kinematics in the frontal plane. Velocity profiles were unimodal for all conditions. The ratio of acceleration time to total movement time changed significantly as a function of the direction and the speed of the movement. Movement time and was not affected by movement direction and consequently changes in gravitational torques, for both speeds tested. Results from this study provide indirect evidence that the CNS executes movements by taking advantage of gravitational force.  相似文献   

11.
In the present study we wanted to determine why straight-ahead movements performed along one's midline are directionally more accurate than movements toward eccentric targets. We also wanted to determine whether the processes underlying this difference were the same in young children as in adults. Six-to-seven-year-old children and adults practiced a video-aiming task using different starting base and target combinations without vision of their ongoing movements. The results indicated that adults and children were directionally more accurate and less variable when pointing toward targets located straight ahead of the starting base rather than eccentric or concentric targets. This was true, regardless of whether the movement was performed along one's midline or not. These results suggest that angled movements are directionally less accurate than straight-ahead movements because of difficulty in defining the orientation of the appropriate movement vector in the workspace and/or in transforming it into appropriate motor commands. A kinematic analysis revealed large coefficients of direction and of extent variability early after movement initiation. However, these coefficients of variability were largely reduced by the occurrence of peak extent velocity, revealing that noise in initial movement planning was quickly reduced by on-line control processes. Finally, the results indicated largely similar planning and control processes for young children and adults. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
Dorsal spinocerebellar tract (DSCT) neurons have been shown to transmit signals related to hindlimb position and movement direction in the anesthetized cat. Because both parameters may be encoded by single neurons, we examined the extent to which their representations might occur sequentially or simultaneously by recording unit activity while the hindlimb was moved passively in the sagittal plane by a robot arm. A center-out/out-center paradigm moved the foot 2 cm from a given position radially to eight positions located 45 degrees apart, holding each position for 8 s. Another paradigm moved the foot along various paths to 20 positions distributed throughout most of the limb's workspace. With each paradigm, we could assess the activity related to foot position and the direction of movement to each position. Modulation of unit activity evoked by center-out/out-center movements was determined for each 1-s postmovement interval by use of a cosine tuning model that specified modulation amplitude and preferred direction. Of 125 units tested, 82.4% were significantly modulated (P < 0.05) according to this model. We assessed the relative contributions of position and movement by taking advantage of the fact that directional modulation following out-center movements to a common position could only be related to the movement, whereas that following the center-out movements related to both position and movement. The results suggested a simultaneous modulation by these two parameters. Each cell could be characterized by a similar preferred direction for position or movement modulation and the distribution of preferred directions across cells clustered significantly along an axis close to the limb axis. When the limb axis was rotated, the unit preferred directions rotated similarly, on average. Unexpectedly, we found the activity of more than half the cells to be modulated for > or = 8 s after out-center movements, implying a persistent movement-related activity well after a movement is completed. These findings were confirmed and extended with the second paradigm by using a multivariate regression model that included terms for position, movement, and their multiplicative interaction. The activity of 81.3% of the 97 neurons tested fit the model (R2 > 0.4, P < .0001); 31.6% were modulated exclusively by foot position, and 58.2% simultaneously by both position and movement, with significant interaction. We conclude from our results that DSCT neurons may be modulated simultaneously by limb position and movement, and their preferred directions tend to align with the limb axis. The modulation is interactive such that movement modulation amplitude depends on limb position, and many cells also retain a memory trace of recent movements. The results are discussed in terms of a possible role for the DSCT in encoding limb compliance.  相似文献   

13.
20 elderly and 20 young Ss drew pictures or wrote words for picture or word stimuli. Elderly Ss had slower response initiation than young Ss, especially when drawing. Beyond this, both age groups processed picture and word stimuli similarly. Elderly and young Ss exhibited equivalent latency increases for cross-modality trials (e.g., draw a picture given a word) over within-modality trials (e.g., draw a picture given a picture), regardless of stimulus or task modality. Strong support was found for a mathematical model of these results, which assumes age-related additive slowing for input and output subprocesses but age invariance for a cross-modality transfer subprocess. However, regressing elderly on young whole-condition latencies indicated general, multiplicative slowing: a discrepancy that questions the utility of the global Brinley plot procedure in revealing the nature of age-related slowing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Young and older adults' mechanisms of trial-by-trial control of accuracy and choice reaction times (RTs) were compared in 2,000 trials. With equal mean error rates, the older group's correct and error RT were longer, and their within-subject distribution was a linear function of the younger group's. Conditional accuracy functions (CAFs) were very similar in location and shape, with both groups achieving 95% accuracy at the same RT. Combining RT distributions with CAFs showed that the older group did not track their limits as often as the younger group, and they were more careful, having fewer very fast (near random) responses, more average speed responses in long error-free runs, and more slowing following an error. All participants were faster before an error and slower immediately after, but the older participants had coarser RT control. To compensate for this, the older participants produced slower responding to avoid the very fast, high-error part of the CAF. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
This study examined the influence of trunk recruitment on the kinematic characteristics of pointing movements. The distribution of final positions of the hand, the extent and direction of the hand trajectory was basically preserved when trunk movement was combined with arm pointing. These effects were observed during pointing not only with but also without vision. The results imply that two functionally independent units of coordination are used in pointing regardless of visual feedback-one producing arm movement to the target (the reaching synergy) and the other coordinating trunk and arm movements diminishing the influence of the trunk on the arm endpoint trajectory (the compensatory synergy).  相似文献   

16.
Human arm movements towards visual targets are remarkably reproducible in several tasks and conditions. Various authors have reported that trajectories of unconstrained point-to-point movements are slightly curved, smooth and have bell-shaped velocity profiles. The hand paths of such movements show small - but significant - curvatures throughout the workspace. The cause of these curvatures is still obscure. Traditionally this curvature is explained as the result of an optimisation process or is ascribed to mechanical or dynamic properties of the effector system. Recently, however, it has been suggested that these curvatures are due at least partly, to the visual misperception of straight lines. To evaluate the latter hypothesis, we compared unconstrained, self-paced point-to-point movements that subjects made with their right and left hand. We assume that the visual misperception may depend on the position in the workspace, subject, etc. but not on the hand used to make the movement. Therefore we argue that if curvature is caused by a visual misperception of straight lines, curvatures should be the same for movements made with the left and right hand. Our experiments cast strong doubt on the hypothesis that curvatures are the result of a visual distortion, because curvatures of the left hand trajectories, mirrored in the mid-sagittal plane, are found to be accurately described by trajectories of the right hand. Estimates of the effect of visual distortion on movement curvature show that, if present, this effect is very small compared with other sources that contribute to movement curvature. We found that curvatures depend strongly on the subject and on the direction and distance of the movement. Curvatures do not seem to be caused purely by the dynamic properties of the arm, since curvatures do not change significantly with increasing movement velocity. Therefore, we conclude that curvatures reflect an inherent property of the control of multi-joint arm movements.  相似文献   

17.
This article addresses questions about the preparatory processes that immediately precede saccadic eye movements. Saccade latencies were measured in a task in which subjects were provided partial advance information about the spatial location of a target fixation. In one experiment, subjects were faster in initiating saccades when they knew either the direction or amplitude of the required movement in advance compared to a condition with equal uncertainty about the number of potential saccade targets but without knowledge of the parameters required to execute the movement. These results suggest that the direction and amplitude for an upcoming saccade were calculated separately, and not in a fixed serial order. In another experiment, subjects appear to have programmed the saccades more holistically—with computations of direction and amplitude parameters occurring simultaneously. The implications of these results for models of eye movement preparation are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
This study aimed to quantify the efficiency and smoothness of voluntary movement in Huntington's disease (HD) by the use of a graphics tablet that permits analysis of movements profiles. In particular, we aimed to ascertain whether a concurrent task (digit span) would affect the kinematics of goal-directed movements. Twelve patients with HD and their matched controls performed 12 vertical zig-zag movements, with both left and right hands (with and without the concurrent task), to large or small circular targets over long or short extents. The concurrent task was associated with shorter movement times and reduced right-hand superiority. Patients with HD were overall slower, especially, with long strokes, and had similar peak velocities for both small and large targets, so that controls could better accommodate differences in target size. Patients with HD spent more time decelerating, especially with small targets, whereas controls allocated more nearly equal proportions of time to the acceleration and deceleration phases of movement, especially with large targets. Short strokes were generally less force inefficient than were long strokes, especially so for either hand in either group in the absence of the concurrent task, and for the right hand is its presence. With the concurrent task, however, the left hand's behavior changed differentially for the two groups; for patients with HD, it became more force efficient with short strokes and even less efficient with long strokes, whereas for controls, it became more efficient with long strokes. Controls may be able to divert attention away from the inferior left hand, increasing its automaticity, whereas patients with HD, because of disease, may be forced to engage even further online visual control under the demands of a concurrent task. Patients with HD may perhaps become increasingly reliant on terminal visual guidance, which indicates an impairment in constructing and refining an internal representation of the movement necessary for its effective execution. Basal ganglia dysfunction may impair the ability to use internally generated cues to guide movement.  相似文献   

19.
Movement-related potentials were recorded preceding self-paced voluntary movements in patients with Parkinson's disease and in healthy subjects of the same age group. We compared the Readiness Potential preceding joystick movements in a fixed direction and preceding joystick movements in freely selected directions. In normal subjects the Readiness Potential amplitude was higher preceding freely selected movements than preceding movements in a fixed direction. The Readiness Potential in Parkinson patients failed to be modified by the different modes of movement selection. The modulation of the Readiness Potential by different ways of preparing for movement might be due to the supplementary motor area (SMA) being more strongly engaged by tasks requiring internal control of movements than by tasks that are externally structured. The results suggest that this task-dependent variation of SMA activity is reduced in Parkinson's disease. A failing capacity to adapt SMA activity to different task demands has previously been suggested by evidence from positron emission tomography studies using similar tasks.  相似文献   

20.
1. To understand roles played by two cortical motor areas, the presupplementary motor area (pre-SMA) and supplementary motor area (SMA), in changing planned movements voluntarily, cellular activity was examined in two monkeys (Macaca fuscata) trained to perform an arm-reaching task in which they were asked to press one of two target buttons (right or left) in three different task modes. 2. In the first mode (visual), monkeys were visually instructed to result and press either a right or left key in response to a forth coming trigger signal. In the second mode (stay), monkeys were required to wait for the trigger signal and press the same target key as pressed in preceding trials. In the third mode (shift), a 50 Hz auditory cue instructed the monkey to shift the target of the future reach from the previous target to the previous nontarget. 3. While the monkeys were performing this task, we recorded 399 task-related cellular activities from the SMA and the pre-SMA. Among them, we found a group of neurons that exhibited activity changes related specifically to shift trials (shift-related cells). The following properties characterized these 112 neurons. First, they exhibited activity changes after the onset of the 50-Hz auditory cue and before the movement execution when the monkeys were required to change the direction of forthcoming movement. Second, they were not active when the monkeys pressed the same key without changing the direction of the movements. Third, they were not active when the monkeys received the 50-Hz auditory cue but failed to change the direction of the movements by mistake. These observations indicate that the activity of shift-related cells is related to the redirection of the forthcoming movements, but not to the auditory instruction itself or to the location of the target key or the direction of the forthcoming movements. 4. Although infrequently, monkeys made errors in the stay trials and changed directions of the reach voluntarily. In that case, a considerably high proportion of shift-related neurons (12 of 19) exhibited significant activity changes long before initiation of the reach movement. These long-lasting activities were not observed during the preparatory period in correct stay trials, but resembled the shift-related activity observed when the target shift was made toward the same direction. Thus these activity changes were considered to be also related to the process of changing the intended movements voluntarily. 5. We found another population of neurons that showed activity modulation when the target shift was induced by the visual instruction in visual trials (visually guided shift-related neurons). These neurons were active when the light-emitting diode (LED) guided the forthcoming reach to the previous nontarget but not to the previous target. Therefore their activity was not a simple visual response to the LED per se. A majority of them also showed shift-related activity in shift trials (19 of 22 in monkey 2). 6. Neurons exhibiting the shift-related activity were distributed differentially among the two areas. In the pre-SMA, 31% of the neurons recorded showed the shift-related activity, whereas in the SMA, only 7% showed such an activity. These results suggest that pre-SMA and SMA play differential roles in updating the motor plans in accordance with current requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号