首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It was found that the absorbance and fluorescence of green fluorescent protein (GFP) mutants are strongly pH dependent in aqueous solutions and intracellular compartments in living cells. pH titrations of purified recombinant GFP mutants indicated >10-fold reversible changes in absorbance and fluorescence with pKa values of 6.0 (GFP-F64L/S65T), 5.9 (S65T), 6.1 (Y66H), and 4.8 (T203I) with apparent Hill coefficients of 0.7 for Y66H and approximately 1 for the other proteins. For GFP-S65T in aqueous solution in the pH range 5-8, the fluorescence spectral shape, lifetime (2.8 ns), and circular dichroic spectra were pH independent, and fluorescence responded reversibly to a pH change in <1 ms. At lower pH, the fluorescence response was slowed and not completely reversed. These findings suggest that GFP pH sensitivity involves simple protonation events at a pH of >5, but both protonation and conformational changes at lower pH. To evaluate GFP as an intracellular pH indicator, CHO and LLC-PK1 cells were transfected with cDNAs that targeted GFP-F64L/S65T to cytoplasm, mitochondria, Golgi, and endoplasmic reticulum. Calibration procedures were developed to determine the pH dependence of intracellular GFP fluorescence utilizing ionophore combinations (nigericin and CCCP) or digitonin. The pH sensitivity of GFP-F64L/S65T in cytoplasm and organelles was similar to that of purified GFP-F64L/S65T in saline. NH4Cl pulse experiments indicated that intracellular GFP fluorescence responds very rapidly to a pH change. Applications of intracellular GFP were demonstrated, including cytoplasmic and organellar pH measurement, pH regulation, and response of mitochondrial pH to protonophores. The results establish the application of GFP as a targetable, noninvasive indicator of intracellular pH.  相似文献   

2.
It is thought that the high protein density in the mitochondrial matrix results in severely restricted solute diffusion and metabolite channeling from one enzyme to another without free aqueous-phase diffusion. To test this hypothesis, we measured the diffusion of green fluorescent protein (GFP) expressed in the mitochondrial matrix of fibroblast, liver, skeletal muscle, and epithelial cell lines. Spot photobleaching of GFP with a 100x objective (0.8-micron spot diam) gave half-times for fluorescence recovery of 15-19 ms with >90% of the GFP mobile. As predicted for aqueous-phase diffusion in a confined compartment, fluorescence recovery was slowed or abolished by increased laser spot size or bleach time, and by paraformaldehyde fixation. Quantitative analysis of bleach data using a mathematical model of matrix diffusion gave GFP diffusion coefficients of 2-3 x 10(-7) cm2/s, only three to fourfold less than that for GFP diffusion in water. In contrast, little recovery was found for bleaching of GFP in fusion with subunits of the fatty acid beta-oxidation multienzyme complex that are normally present in the matrix. Measurement of the rotation of unconjugated GFP by time-resolved anisotropy gave a rotational correlation time of 23.3 +/- 1 ns, similar to that of 20 ns for GFP rotation in water. A rapid rotational correlation time of 325 ps was also found for a small fluorescent probe (BCECF, approximately 0.5 kD) in the matrix of isolated liver mitochondria. The rapid and unrestricted diffusion of solutes in the mitochondrial matrix suggests that metabolite channeling may not be required to overcome diffusive barriers. We propose that the clustering of matrix enzymes in membrane-associated complexes might serve to establish a relatively uncrowded aqueous space in which solutes can freely diffuse.  相似文献   

3.
The mitochondrial import receptor translocase of the outer membrane of mitochondria (Tom20) consists of five segments, an N-terminal membrane-anchor segment, a linker segment rich in charged amino acids, a tetratricopeptide repeat motif, a glutamine-rich segment, and a C-terminal segment. To assess the role of each segment, four C-terminally truncated mutants of the human receptor (hTom20) were constructed, and the effect of their overexpression in COS-7 cells was analyzed. Expression of a mutant lacking the tetratricopeptide repeat motif inhibited preornithine transcarbamylase (pOTC) import to the same extent as the wild-type receptor. Thus, overexpression of the membrane-anchor and the linker segments is sufficient for the inhibition of import. Expression of either the wild-type receptor or a mutant lacking the C-terminal end of 20 amino acid residues stimulated import of pOTC-green fluorescent protein (GFP), a fusion protein in which the presequene of pOTC was fused to green fluorescent protein. On the other hand, expression of mutants lacking either the glutamine-rich segment or larger deletions inhibited pOTC-GFP import. In vitro import of pOTC was inhibited by the wild-type hTom20 and the mutant lacking the C-terminal end, but much less strongly by the mutant lacking the glutamine-rich segment. On the other hand, import of pOTC-GFP was little affected by any of the forms of hTom20. In binding assays, pOTC binding to hTom20 was only moderately decreased by the deletion of the glutamine-rich segment, whereas pOTC-GFP binding was completely lost by this deletion. Binding of pOTCN-GFP a construct that contains an additional 58 N-terminal residues of mature OTC, resembled that of pOTC. All of these results indicate that the region 106-125 containing the glutamine-rich segment of hTom20 is essential for binding and import stimulation in vivo of pOTC-GFP and for inhibition of in vitro import of pOTC. The results also indicate that this region is important for mitochondrial aggregation. The different behaviors of pOTC and the pOTC-GFP chimera toward hTom20 mutants is explicable on the basis of the conformation of the precursor proteins.  相似文献   

4.
In this work, we describe the isolation of a new cDNA encoding an NADP-dependent isocitrate dehydrogenase (ICDH). The nucleotide sequence in its 5' region gives a deduced amino acid sequence indicative of a targeting peptide. However, even if this cDNA clearly encodes a noncytosolic ICDH, it is not possible to say from the targeting peptide sequence to which subcellular compartment the protein is addressed. To respond to this question, we have transformed tobacco plants with a construct containing the entire targeting signal-encoding sequence in front of a modified green fluorescent protein (GFP) gene. This construct was placed under the control of the cauliflower mosaic virus 35S promoter, and transgenic tobacco plants were regenerated. At the same time, and as a control, we also have transformed tobacco plants with the same construct but lacking the nucleotide sequence corresponding to the ICDH-targeting peptide, in which the GFP is retained in the cytoplasm. By optical and confocal microscopy of leaf epiderm and Western blot analyses, we show that the putative-targeting sequence encoded by the cDNA addresses the GFP exclusively into the mitochondria of plant cells. Therefore, we conclude that this cDNA encodes a mitochondrial ICDH.  相似文献   

5.
Two mutants of the green fluorescent protein (GFP), RSGFP4 and GFPS65T, have been recently created which differ from the wildtype GFP of A. victoria in their excitation maxima. Here we show that human fibroblasts transfected with either of the two mutant GFP genes emit a green fluorescence that is 18-fold brighter than the cells transfected with the wildtype GFP gene. Retroviral vectors expressing the improved GFP gene were also constructed to determine their suitability for stable gene transduction into mammalian cells. The inclusion of the RSGFP4 gene in a retroviral vector did not reduce the viral titer and resulted in a fluorescent signal in viable transduced cells detectable by both fluorescence microscopy and fluorescence-activated cell sorter (FACS) analysis. Therefore, the improved mutant GFP provides a vital marker for monitoring gene transfer and expression in mammalian cells.  相似文献   

6.
Glutathione reductase (GR), which catalyzes the conversion of glutathione disulfide to glutathione, is encoded in nuclear DNA, but is active in cytoplasm and mitochondria. However, analyses of known protein and DNA sequences for human GR have not revealed a potential mitochondrial targeting signal (MTS). We generated two 5'-truncated GR clones, which resulted in omission of the N-terminal 5 or 10 amino acids, to disable a potential targeting signal, and generated two GR clones containing synthetic MTS cDNAs. Transfection of Chinese hamster ovary cells with the full length human GR cDNA or with the 5'-truncated clones increased cytosolic GR activities 6- to 14-fold, but increased mitochondrial activities less than 2-fold. In contrast, transfection with either of the GR clones containing MTS cDNAs increased GR activities in mitochondria more than 24-fold. We conclude that the existing protein and DNA sequences for human GR do not contain a MTS and that such a signal is needed for effective mitochondrial targeting.  相似文献   

7.
Steroidogenic acute regulatory protein (StAR) facilitates delivery of cholesterol to the inner mitochondrial membranes. StAR is imported into mitochondria and processed to a mature form by cleavage of the N-terminal mitochondrial targeting sequence. We produced His-tagged (His-tag StAR) constructs lacking the N-terminal 62 amino acids that encode the mitochondrial targeting sequence and examined their steroidogenic activity in intact cells and on isolated mitochondria. His-tag StAR proteins stimulated pregnenolone synthesis to the same extent as wild-type StAR when expressed in COS-1 cells transfected with the cholesterol side-chain cleavage system. His-tag StAR was diffusely distributed in the cytoplasm of transfected COS-1 cells, whereas wild-type StAR was localized to mitochondria. There was no evidence at the light or electron microscope levels for selective localization of His-tag StAR protein to mitochondrial membranes. We established an assay system using mitochondria isolated from bovine corpora lutea and purified recombinant His-tag StAR proteins expressed in E. coli. Recombinant His-tag StAR stimulated pregnenolone production in a dose- and time-dependent manner, functioning at nanomolar concentrations. A point mutant of StAR (A218V) that causes lipoid congenital adrenal hyperplasia was incorporated into the His-tag protein. This mutant was steroidogenically inactive in COS-1 cells and on isolated mitochondria. Our observations conclusively document that StAR acts on the outside of mitochondria, independent of mitochondrial import.  相似文献   

8.
The cDNA for Chinese hamster mitochondrial Hsp70 (mHsp70) was cloned and sequenced using a polymerase chain reaction probe based on conserved regions in the Hsp70 family of proteins. The encoded protein consists of 679 amino acids which includes a N-terminal mitochondrial targeting sequence of 46 amino acids. The mHsp70 protein contains several sequence signatures that are characteristics of prokaryotic and eukaryotic organellar Hsp70 homologs. In a phylogenetic tree based on Hsp70 sequences, it branches with the gram-negative proteobacteria, supporting the endosymbiotic origin of mitochondria from this group of prokaryotes. The mHsp70 cDNA was transcribed and translated in vitro and its import into isolated rat heart mitochondria was examined. The precursor mHsp70 was converted into a mature form of lower molecular mass (approximately 71 kDa) which became resistant to trypsin digestion. The import of mHsp70 into mitochondria was not observed in the presence of an uncoupler of energy metabolism or when the N-terminal presequence was lacking. The cDNA for mHsp70 was expressed in Escherichia coli and a polyclonal antibody to the purified recombinant protein was raised. The antibody shows no cross-reactivity to recombinant cytosolic Hsp70 protein and in 2-D gel blots it reacted specifically with the mHsp70 protein only. In immunofluorescence experiments, the antibody predominantly labeled mitochondria, and the observed labeling pattern was identical to that seen with a monoclonal antibody to the mitochondrial Hsp60 chaperonin. The affinity-purified antibody to mHsp70 was also employed to examine the subcellular distribution of the protein by cryoelectron microscopy and the immunogold-labeling technique. In these experiments, in addition to mitochondria, labeling with mitochondrial Hsp70 antibody was also observed on the plasma membrane and in unidentified cytoplasmic vesicles and granules. These studies raise the possibility that similar to the Hsp60 chaperonin and a number of other mitochondrial proteins, mHsp70 may have an extramitochondrial role.  相似文献   

9.
Batten disease (juvenile neuronal ceroid lipofuscinosis) is a recessive neurodegenerative disorder of childhood. The gene, CLN3, was recently identified and found to encode a novel 438 amino acid protein of unknown function. In order to gain insight into the function of the Batten disease protein (CLN3p), we investigated its subcellular localization. Protein constructs incorporating CLN3p fused to the green fluorescence protein or an eight amino acid peptide tag were transiently expressed in fibroblasts, HeLa and COS-7 cells. A juxtanuclear, asymmetric localization pattern was observed that correlated with the Golgi apparatus in all three cell types. However, a proportion of transiently transfected cells exhibited a punctate vesicular distribution throughout the cytoplasm in addition to or without the Golgi localization. In order to account for localization patterns arising from intracellular protein transport disruption due to exaggerated overexpression in transiently transfected cells, we isolated a stably transfected cell line expressing only one copy of the CLN3 -GFP DNA construct. Fluorescence and biochemical analyses using this cell line demonstrated that CLN3p is an integral membrane protein that localizes primarily in the Golgi apparatus. The functional implications of this finding are discussed.  相似文献   

10.
To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle.  相似文献   

11.
Zellweger syndrome is a prototype of peroxisomal biogenesis disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kD peroxisomal membrane protein (PMP70) genes have been detected by our group F and Roscher's group 1, respectively. We now describe permanent recovery from generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from group F, such as biochemical defects of peroxisomal beta-oxidation, plasmalogen biosynthesis, and morphologic absence of peroxisomes, by stable transfection of human cDNA encoding PAF-1. In the light of these observations, we designed a gene expression system using fibroblasts from patients with peroxisomal biogenesis disorders. In Zellweger fibroblasts obtained from Roscher's group 1 and transfected with human cDNA encoding PMP70, peroxisomes were not morphologically identifiable, and peroxisomal function did not normalize.  相似文献   

12.
13.
Most mitochondrial proteins are nuclear encoded, synthesized on cytosolic ribosomes, and imported into the mitochondria. We have identified and characterized a 309 amino acid human protein with a molecular weight of 34 kDa that functions as a subunit of the translocase for the import of such proteins. hTom34 (34-kDa Translocase of the Outer Mitochondrial Membrane) is displayed on the surface of mitochondria and is resistant to extraction under alkaline conditions. Antibodies raised against hTom34 specifically inhibit in vitro import of the mitochondrial precursor protein preornithine transcarbamylase into mitochondria isolated from rat liver. Based on trypsin digestion experiments, the receptor has a large (27 kDa) C-terminal domain exposed to the cytosol. This novel component of the protein import machinery possesses a 62 residue motif conserved with the Tom70 family of mitochondrial receptors but otherwise appears to have no counterpart so far characterized in the mitochondria of any other species.  相似文献   

14.
Mitochondrial creatine kinases form octameric structures composed of four active and stable dimers. Octamer formation has been postulated to occur via interaction of the charged amino acids in the N-terminal peptide of the mature enzyme. We altered codons for charged amino acids in the N-terminal region of mature sarcomeric mitochondrial creatine kinase (sMtCK) to those encoding neutral amino acids. Transfection of normal sMtCK cDNA or those with the mutations R42G, E43G/H45G, and K46G into rat neonatal cardiomyocytes resulted in enzymatically active sMtCK expression in all. After hypoosmotic treatment of isolated mitochondria, mitochondrial inner membrane-associated and soluble sMtCK from the intermembranous space were measured. The R42G and E43G/H45G double mutation caused destabilization of the octameric structure of sMtCK and a profound reduction in binding of sMtCK to the inner mitochondrial membrane. The other mutant sMtCK proteins had modest reductions in binding. Creatine-stimulated respiration was markedly reduced in mitochondria isolated from cells transfected with the R42G mutant cDNA as compared with those transfected with normal sMtCK cDNA. We conclude that neutralization of charges in N-terminal peptide resulted in destabilization of octamer structure of sMtCK. Thus, charged amino acids at the N-terminal moiety of mature sMtCK are essential for octamer formation, binding of sMtCK with inner mitochondrial membrane, and coupling of sMtCK to oxidative phosphorylation.  相似文献   

15.
Green fluorescent protein (GFP) from Aequorea victoria has rapidly become a standard reporter in many biological systems. However, the use of GFP in higher plants has been limited by aberrant splicing of the corresponding mRNA and by protein insolubility. It has been shown that GFP can be expressed in Arabidopsis thaliana after altering the codon usage in the region that is incorrectly spliced, but the fluorescence signal is weak, possibly due to aggregation of the encoded protein. Through site-directed mutagenesis, we have generated a more soluble version of the codon-modified GFP called soluble-modified GFP (smGFP). The excitation and emission spectra for this protein are nearly identical to wild-type GFP. When introduced into A. thaliana, greater fluorescence was observed compared to the codon-modified GFP, implying that smGFP is 'brighter' because more of it is present in a soluble and functional form. Using the smGFP template, two spectral variants were created, a soluble-modified red-shifted GFP (smRS-GFP) and a soluble-modified blue-fluorescent protein (smBFP). The increased fluorescence output of smGFP will further the use of this reporter in higher plants. In addition, the distinct spectral characters of smRS-GFP and smBFP should allow for dual monitoring of gene expression, protein localization, and detection of in vivo protein-protein interactions.  相似文献   

16.
RN Day  M Kawecki  D Berry 《Canadian Metallurgical Quarterly》1998,25(5):848-50, 852-4, 856
The firefly luciferase (Luc) protein and the jellyfish green fluorescent protein (GFP) are two commonly used molecular reporters that can be detected noninvasively in living cells. The properties that make GFP or Luc useful for a particular experimental application are quite distinct. A recombinant protein with both fluorescent and bioluminescent characteristics might take advantage of the strengths of both reporters. An expression vector encoding a chimeric protein in which GFP was tethered to Luc through a 19-amino acid linker was prepared and characterized. Western blotting with antibodies specific for either GFP or Luc showed that a protein of appropriate size was expressed in transfected cells. Fluorescence microscopy revealed bright green fluorescence from transfected cells, indicating proper formation of the GFP chromophore. Luc enzymatic activity in protein extracts from transfected cells showed that Luc was fully functional. The treatment of living cell cultures stably expressing the GFP-Luc fusion protein with the protein translation-inhibitor cycloheximide (Chx) was used to show that the half-life for Luc protein activity was approximately 2 h at 37 degrees C. The utility of this dual-function reporter protein was shown by the identification of single living cells expressing the chimeric protein within a population by fluorescence microscopy, followed by quantification of Luc activity from the same living cells.  相似文献   

17.
11Beta-hydroxysteroid dehydrogenase (11beta-HSD) is thought to confer aldosterone specificity to mineralocorticoid target cells by protecting the mineralocorticoid receptor (MR) from occupancy by endogenous glucocorticoids. In aldosterone target cells the type 2 11beta-HSD is present, which, in contrast to the type 1 11beta-HSD, has very high affinity for its substrate, is unidirectional and prefers NAD as cofactor. cDNAs encoding 11beta-HSD2 have been recently cloned from different species, and the cell-specific expression of its mRNA and protein were determined. 11Beta-HSD2 is expressed in every aldosterone target tissue. Northern analysis revealed that the rabbit 11beta-HSD2 is expressed at high levels in the renal collecting duct and at much lower levels in the colon. RT-PCR experiments demonstrated that 11beta-HSD2 mRNA is present only in aldosterone target cells within the kidney. We determined the subcellular localization of the rabbit 11beta-HSD2 using a chimera encoding 11beta-HSD2 and the green fluorescent protein (GFP). This construct was stably transfected into CHO and MDCK cells. The expressed 11beta-HSD2/GFP protein retained high enzymatic activity, and its characteristics were undistinguishable from those of the native enzyme. The intracellular localization of this protein was determined by fluorescence microscopy. 11Beta-HSD2-associated fluorescence was observed as a reticular network over the cytoplasm whereas the plasma membrane and the nucleus were negative, suggesting endoplasmic reticulum (ER) localization. Co-staining with markers for ER proteins, the Golgi membrane, mitochondria and nucleus confirmed that 11beta-HSD2 is localized exclusively to the ER. To determine what structural motifs are responsible for the ER localization, we generated deletion mutants missing the C-terminal 42 and 118 amino acids, and fused them to GFP. Similarly as with the intact 11beta-HSD2, these mutants localized exclusively to the ER. Both C-terminal deletion mutants completely lost dehydrogenase activity, independently whether activity was determined in intact cells or homogenates. These results indicate that 11beta-HSD2 has a novel ER retrieval signal which is not localized to the C-terminal region. In addition, the C-terminal 118 amino acids are essential for NAD-dependent 11beta-HSD activity.  相似文献   

18.
This study reports subcellular localization of nicorandil in the myocardium and metabolism in mitochondria after oral dosing of 3 mg/kg nicorandil to rats. In the in vitro experiments, nicorandil, which was incubated with tissue homogenates (liver, kidney, heart, and small intestine), was metabolized to its denitrated compound, SG-86, and unknown substances. In the absence of a NADPH-generating system in the heart, the metabolic activity existed only in the mitochondrial fraction, but not in cytosolic and microsomal fractions. In the presence of the system, the activity in the mitochondrial fraction became much higher. To examine subcellular distribution of nicorandil in the myocardium, [14C]nicorandil was orally given to rats. Fifteen minutes after oral dosing of 3 mg/kg [14C]nicorandil, of which myocardial concentration reached a peak, nicorandil and SG-86 were found in mitochondrial fractions as well as in cytosolic and microsomal ones of the heart. Electron-microscopic autoradiograms, 15 min after oral dosing of 3 mg/kg [3H]nicorandil to rats, also showed the existence of the silver grains (showing radioactivity) in mitochondria of the heart. We conclude that nicorandil given orally is distributed in mitochondria of the heart, being partly transformed into SG-86, and that the myocardial mitochondria may be a potential site of action of nicorandil, an opener of KATP channels, which have been demonstrated to be present in this subcellular particle.  相似文献   

19.
We describe a method of monitoring the spatial dynamics of proteins in intact cells by locally enhancing the blue excited fluorescence of green fluorescent protein (GFP) using a spatially focused ultraviolet-laser pulse. GFP fusion proteins were efficiently expressed by micro-electroporation of in vitro synthesized mRNA into adherent mammalian cells. We found that the diffusion coefficient of cycle 3 mutant GFP was 43 microns2/sec, compared to 4 microns2/sec for wild-type GFP, suggesting that cycle 3 GFP diffuses freely in mammalian cells and is ideally suited as a fusion tag. The local fluorescence enhancement method was used to study the membrane dissociation rate of GFP-tagged K-ras, a small GTP binding protein that localizes to plasma membranes by a farnesyl lipid group and a polybasic region. Our data suggest that K-ras exists in a dynamic equilibrium and rapidly switches between a plasma membrane bound form and a cytosolic form with a plasma membrane dissociation time constant of 1.5 sec.  相似文献   

20.
TOM22 is an essential mitochondrial outer membrane protein required for the import of precursor proteins into the organelles. The amino-terminal 84 amino acids of TOM22 extend into the cytosol and include 19 negatively and 6 positively charged residues. This region of the protein is thought to interact with positively charged presequences on mitochondrial preproteins, presumably via electrostatic interactions. We constructed a series of mutant derivatives of TOM22 in which 2 to 15 of the negatively charged residues in the cytosolic domain were changed to their corresponding amido forms. The mutant constructs were transformed into a sheltered Neurospora crassa heterokaryon bearing a tom22::hygromycin R disruption in one nucleus. All constructs restored viability to the disruption-carrying nucleus and gave rise to homokaryotic strains containing mutant tom22 alleles. Isolated mitochondria from three representative mutant strains, including the mutant carrying 15 neutralized residues (strain 861), imported precursor proteins at efficiencies comparable to those for wild-type organelles. Precursor binding studies with mitochondrial outer membrane vesicles from several of the mutant strains, including strain 861, revealed only slight differences from binding to wild-type vesicles. Deletion mutants lacking portions of the negatively charged region of TOM22 can also restore viability to the disruption-containing nucleus, but mutants lacking the entire region cannot. Taken together, these data suggest that an abundance of negative charges in the cytosolic domain of TOM22 is not essential for the binding or import of mitochondrial precursor proteins; however, other features in the domain are required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号