首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
王毅强  张立同  成来飞  马军强 《硅酸盐学报》2008,36(8):1062-1068,1078
采用化学气相渗透法制备了2维和2.5维碳纤维增强碳化硅(carbon-fiber-reinforced silicon carbide,C/SiC)复合材料,沿经纱(纵向)和纬纱(横向) 2个方向对2种复合材料进行了室温拉伸性能测试,并从预制体结构和原始缺陷分布的角度对比分析了两者力学性能之间的差异.结果表明:两种C/SiC复合材料均表现出明显的非线性力学行为,在经纱方向和纬纱方向上,2维C/SiC复合材料力学性能表现为各向同性,而2.5维C/SiC复合材料力学性能则表现出明显的各向异性:经纱方向上2.5维C/SiC复合材料的拉伸强度和拉伸模量(326 MPa,153 GPa)均高于2维C/SiC复合材料的(245 MPa,96 GPa),纬纱方向上的(145 MPa,62 GPa)均低于2维C/SiC复合材料的(239 MPa,90 GPa).两种复合材料的拉伸断裂行为均表现为典型的韧性断裂,并伴有大量的纤维拔出.两种复合材料中纱线断裂均呈现出多级台阶式断裂方式,但其断裂位置并不相同.2.5维C/SiC复合材料中由于经纱路径近似于正弦波,弯曲程度较大,在纱线交叉点处造成明显的应力集中,因此经纱多在纱线交叉点处断裂;而纬纱由于其路径近乎直线,应力集中现象不明显,因此纬纱断裂位置呈随机分布.2维C/SiC复合材料中经纱和纬纱由于其路径类似于2.5维C/SiC复合材料中的经纱,因此其断裂位置也多在纱线交叉点处.微观结构观察表明不同的编织结构是造成两种复合材料在不同方向上力学性能差异的主要原因.  相似文献   

2.
化学气相渗透法制备三维针刺C/SiC复合材料的烧蚀性能   总被引:1,自引:0,他引:1  
用化学气相渗透法制备了三维针刺碳纤维增强碳化硅陶瓷基复合材料,复合材料的平均密度为2.15 g/cm3,气孔率为16.0%.用氧乙炔焰研究了复合材料的烧蚀性能,用扫描电镜分析了烧蚀表面的形貌,用表面能谱分析了烧蚀产物的成分.复合材料的线烧蚀率和质量烧蚀率分别为0.03mm/s和0.004 7 g/s.在烧蚀中心区,烧蚀最严重,表层只有C纤维骨架,且C纤维呈针状,复合材料的烧蚀以升华和冲刷为主.在烧蚀过渡区,垂直于烧蚀面的C纤维表现出端部锐化、根部细化的特性,平行于烧蚀面的C纤维呈针状,复合材料的烧蚀以氧化和机械剥蚀为主.烧蚀边缘烧蚀不明显,烧蚀产物和SiC基体熔融后覆盖在烧蚀表面,阻碍了复合材料的进一步烧蚀,复合材料的烧蚀以氧化为主.  相似文献   

3.
2.5维碳化硅纤维增强碳化硅复合材料的力学性能   总被引:1,自引:0,他引:1  
采用低压化学气相渗透法制备了具有热解碳界面层的2.5维SiCf/SiC复合材料.研究了界面层厚度和基体制备工艺对材料力学性能的影响.结果表明:0.1μm厚的界面层使材料的弯曲强度提高了104.2%从144增加到294MPa),材料表现为非灾难性断裂;界面层厚度进一步增加(到0.161μm),纤维的增强效果减弱,材料的断裂行为变差.基体制备温度由1050℃降到950℃时,材料强度增加了≈45%(从188增加到274MPa):制备压力由8kPa增加到16kPa时,气孔率升高,SiC基体晶粒形状由菱形变为球形.基体的球形晶粒有利于提高材料的承载能力,虽然复合材料的气孔率较高,但其弯曲强度却稍有增加.  相似文献   

4.
化学气相渗透2.5维C/SiC复合材料的拉伸性能   总被引:2,自引:0,他引:2  
采用等温减压化学气相浸渗(isothermal low-pressure chemical vapor infiltration,ILCVI)工艺制备了在厚度方向上具有纤维增强的2.5维(2.5 dimensional,2.5D)碳纤维增强碳化硅多层陶瓷基复合材料,从而使一端封口的防热结构部件的制备成为可能.ILCVI致密化后,复合材料的密度、孔隙率分别为1.95~2.1 g/cm3和16.5%~18%.沿经纱和纬纱两个方向对2.5D C/SiC复合材料进行室温拉伸实验.结果表明:复合材料在纵向和横向的拉伸应力-应变均表现为明显的非线性行为.复合材料具有较高的面内拉伸性能,纵横向的拉伸强度分别为326MPa和145MPa,断裂应变分别为0.697%和0.705%.复合材料的拉伸断裂为典型的韧性断裂,经纱和纬纱的断裂都表现为纤维的多级台阶式断裂以及纤维的大量拔出.  相似文献   

5.
采用化学气相沉积法,在1 100 ℃,在碳纤维增强碳化硅复合材料表面制备SiC涂层,研究了涂层连续沉积和分4次沉积(每次沉积时间为6 h)所制备的SiC涂层的微观结构和涂层样品的氧化性能.结果表明:两种SiC涂层的厚度均约为40 μm,且4次沉积制备的SiC涂层为一个连续的整体.涂层连续沉积时,表面只出现裸露裂纹;分4次沉积制备时,表面出现大量边缘有SiC生长锥的附着裂纹,附着裂纹在高温氧化时易发生自愈合.与连续涂层样品相比,4次涂层能显著提高C/SiC样品的抗氧化性能.4次涂层样品经1 400 ℃,50 h氧化后,质量损失为0.88%,质量损失速率稳定在6.30 × 10-5 g/(cm2?h),且4次涂层样品具有优异的抗热震性能.  相似文献   

6.
对化学气相沉积(CVD)法制备SiC的热力学进行了系统研究,考察了H2-MTS,Ar-SiO-C,H2-SiO-CxHy,H2-SiH4-CxHy等体系,着重研究了温度、压力、载气量和初始反应气体浓度对沉积单相SiC的影响,以CVD相图的形式给出了计算结果,这些相图对CVD法制备SiC的实验具有指导作用.  相似文献   

7.
刘文川  纪锐 《硅酸盐学报》1995,23(3):336-341
采用碳布层叠然后用化学气相渗方法制备了C/SiC复合材料,这种材料纤维与基体间的界面是决策材料力学行为的重要因素,带有热解碳作为界面层的C/SiC材料,在断裂进表现出大范围的脱粘,纤维与周围的基体不同发生断裂,有大量的纤维拨出,断口类似毛刷,无界央层材料表现为脆性平面断口,裂纹直接通过纤维和基体向前扩展,没有发生脱粘。  相似文献   

8.
化学气相沉积法制备碳化硅纤维   总被引:2,自引:0,他引:2  
一、前言 现代宇航、航空等尖端科学技术的迅速发展,对高比强、高比模、耐高温、抗氧化及易加工的新型材料要求越来越迫切。碳纤维增强金属基复合材料固然有很优异的性能,但需在接近或高于金属熔点的高温下制造,金属与碳纤维之间会发生界面反应,从而产生浸润性差、粘结强度不高及高温抗氧化性能差等问题,导致复合材料性能下降,难以满足高温氧化等苛刻条件的使用要求。  相似文献   

9.
通过对2种丝束平纹编织碳纤维布增强SiC(C/SiC)复合材料的力学性能实验,研究了纤维束丝数(1 k和3 k)对复合材料性能的影响.实验结果表明:1 k C/SiC复合材料的拉伸模量、拉伸强度、压缩模量、压缩强度、面内剪切强度和弯曲强度分别为90.8 GPa,281.8 MPa,135.8 GPa,452.2 MPa,464.3 MPa和126.8 MPa,分别比3 k C/SiC高39%,15.8%,25%,132%,29.3%和30.2%.纤维束粗细不同是导致纤维束弯曲度和复合材料孔隙率差异的主要原因,对压缩强度的影响最大,对拉伸强度的影响最小.  相似文献   

10.
以碳化硅(SiC)纤维为增强体,采用真空浸渍法制备了2.5维连续SiC纤维增韧的SiO2基(SiCf/SiO2)复合材料,研究了SiC纤维编织体上不同的界面层对SiCf/SiO2复合材料力学性能的影响.化学气相渗透(CVI)法制备的热解碳(PyC)和PyC/SiC双层界面层分别使材料的抗弯强度由无界面层的52.2 MPa提高至67.4 MPa和180.3 MPa,但均使材料的韧性降低.用扫描电镜观察了材料的断口形貌,结果表明,PyC和PyC/SiC层不仅提高了材料的抗弯强度,而且增加了基体同纤维间的结合力,使基体有效地将载荷传递给纤维.PyC/SiC层能有效地保护SiC纤维,防止烧结过程中释放出的结晶水对纤维的损伤,有助于提高材料的力学性能.  相似文献   

11.
CVI法制备三维碳纤维增韧碳化硅复合材料   总被引:16,自引:4,他引:16  
利用三维编织的碳纤维预制体,采用等温CVI的方法制备出了碳纤维增韧碳化硅复合材料。对于无碳界面层的复合材料(C/SiC),弯曲强度和断裂韧性随密度的提高而提高,最大值分别为520MPa和16.5MPa·m^1/2。密度高的复合材料呈明显的脆性断裂,而密度较低的材料在断裂过程中存在纤维束的拔出而表现出韧性断裂行为。密度较高和无碳界面的复合材料,经1550℃高温处理后,弯曲强度明显降低(350MPa)  相似文献   

12.
CVI法快速制备C/SiC复合材料   总被引:7,自引:1,他引:7  
为缩短CVI法制备C/SiC复合材料的工艺周期并降低成本,研究了CVI工艺过程中沉积温度、MTS(CH3SiC3)摩尔分数和气体流量对SiC沉积速率和MTS有效利用率的影响,实验结果表明:提高沉积温度,常压下1100℃时增大MTS摩尔分数(11%→19%),都有利于提高SiC沉积速率;提高沉积温度和降低反应物气体流量,能提高MTS有效利用率,在优化的工艺条件下,预制体的微观孔隙内沉积了致密的SiC基体,沉积速率达到142μm/h左右,并有效消除了基体中裂纹的形成,MTS的有效利用率为11%-27%。  相似文献   

13.
化学气相反应法制备SiC涂层   总被引:16,自引:1,他引:16  
采用化学气相反应法,以3种不同工艺在C/C复合材料表面制备了SiC涂层,并检测了其抗氧化性能.以工业用Si和辅助剂SiO2为原料,在高温、惰性环境中反应产生SiO蒸气,将其引入反应室与C/C复合材料在不同温度下进行气相反应,在试样表面生成一层致密的SiC涂层。X射线衍射分析表明:涂层是由β-SiC组成。从试样截面的扫描电镜可知:不同工艺制得的SiC涂层界面过渡带颗粒的微观形貌各异。经最优工艺制备的涂层过渡带很窄,有β-SiC纳米晶须生成,且其抗氧化性能最佳。  相似文献   

14.
以环己烯和1-己炔作为反应气氛,对聚碳硅烷(polycarbosilane,PCS)纤维进行化学气相交联不熔化处理,研究不熔化过程中PCS纤维的反应程度,凝胶含量变化以及烧成纤维的组成结构和性能.结果表明:在不饱和烃不熔化过程中,PCS分子结构中的Si-H键参与反应,Si-H键反应程度和PCS纤维的凝胶含量均随不熔化温度的提高逐渐增加且逐渐趋于稳定.制得的SiC纤维中氧的质量分数降低到5%~6%,纤维的拉伸强度达到2.60 GPa.X射线衍射谱显示:与空气不熔化相比,化学气相交联法制备的SiC纤维具有更好的β-SiC微晶结构.  相似文献   

15.
CVI法制备连续纤维增韧陶瓷基复合材料   总被引:6,自引:3,他引:6  
在连续纤维增韧陶瓷基复合材料制备领域,CVI法是目前已经实用并成为商品化的方法,这种方法能在较低温度了制备出形状复合,近尺寸和纤维体积分数高的陶瓷基复合材料,并能实现微观尺度上的成分设计,CVI的最基本问题是物质的传输和化学反应动力学,纤维和基本间的界面,是影响复合材料力学性能的关键,本文旨在从CVI的基本理论,方法和影响复合材料力学的因素出发,以国内外有关研究的水平及现状进行了分析。  相似文献   

16.
碳/碳复合材料等温化学气相渗透工艺模糊系统建模   总被引:6,自引:1,他引:6  
等温化学气相渗透(chemical vapor infiltration,CVI)是制备陶瓷基和碳基复合材料重要的传统工艺,该工艺主要的不足之处是周期极长,因此,优化工艺参数、提高沉积效率是目前等温CVI工艺研究的重点。在实验样本的基础上,利用遗传算法来自动获取和优化模糊规则,从而建立了碳/碳复合材料等温CVI工艺模糊系统。通过系统对训练样本和测试样本的输出,可以看出:系统具有较高的精度和泛化能力。利用该系统,得到了沉积温度、纤维体积分数和沉积室压强等参数对等温CVI工艺的影响规律,对实际生产中CVI工艺的制定有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号